Skip Navigation LinksHome > October 2002 - Volume 97 - Issue 4 > Does the A118G Polymorphism at the μ-opioid Receptor Gene Pr...
Clinical Investigations

Does the A118G Polymorphism at the μ-opioid Receptor Gene Protect against Morphine-6-Glucuronide Toxicity?

Lötsch, Jörn M.D.*; Zimmermann, Michael M.D.†; Darimont, Jutta‡; Marx, Claudia M.D.§; Dudziak, Rafael M.D.∥; Skarke, Carsten M.D.#; Geisslinger, Gerd M.D., Ph.D.**

Free Access
Article Outline
Collapse Box

Author Information

Collapse Box


Background: Some, but not all, patients with renal dysfunction suffer from side effects after morphine administration because of accumulation of the active metabolite morphine-6-glucuronide (M6G). The current study aims to identify genetic causes that put patients at risk for, or protect them from, opioid side effects related to high plasma M6G. Candidate genetic causes are the single nucleotide polymorphism (SNP) A118G of the μ-opioid-receptor gene (OPRM1), which has recently been identified to result in decreased potency of M6G, and mutations in the MDR1-gene coding P-glycoprotein, of which morphine and M6G might be a substrate.
Methods: Two men, aged 87 and 65 yr, with renal failure (creatinine clearance of 6 and 9 ml/min) received 30 mg/day oral morphine for pain treatment. Both patients had sufficient analgesia from morphine. However, while one patient tolerated morphine well despite high plasma M6G of 1735 nM, in the patient with M6G plasma concentrations of 941 nM it caused severe sleepiness and drowsiness. Patients were genotyped for known SNPs of the OPRM1 and MDR1 genes.
Results: The patient who tolerated morphine well despite high plasma M6G was a homozygous carrier of the mutated G118 allele of the μ-opioid-receptor gene, which has been previously related to decreased M6G potency. In contrast, the patient who suffered from side effects was “wild-type” for this mutation. No other differences were found between the OPRM1 and MDR1 genes.
Conclusions: The authors hypothesize that the A118G single nucleotide polymorphism of the μ-opioid-receptor is among the protective factors against M6G-related opioid toxicity. The observation encourages the search for pharmacogenetic reasons that cause interindividual variability of the clinical effects of morphine.
Table 1
Table 1
Image Tools
MORPHINE-6-GLUCURONIDE (M6G) is an active metabolite of morphine. Because it is eliminated via the kidney, it accumulates in patients with renal failure. In those patients, M6G rises to more than 4,000 nM (table 1), whereas in healthy volunteers peak M6G concentrations of about 400 nM are reached after oral dosing of 90 mg morphine sulfate. 1 M6G accumulation is a risk factor for opioid toxicity during morphine treatment (table 1). However, this is not seen in every patient with renal insufficiency who receives morphine. The identification of factors that put a specific patient at risk for, or protect a patient from, opioid side effects under high plasma M6G would greatly enhance the individualization, and thus safety, of morphine therapy.
Back to Top | Article Outline

Materials and Methods

Clinical Cases
Patient B was an 87-yr-old man (body weight 66.5 kg, body height 180 cm) suffering from plasmocytoma, osteoporosis, a fracture of the twelfth vertebral body, arterial hypertension, and advanced renal failure (serum creatinine 8.5 mg/dl, calculated creatinine clearance 6 ml/min, blood urea nitrogen 238 mg/dl). The patient was admitted to the hospital for conservative orthopedic treatment. He suffered from severe lower back pain. His mental state was clear and oriented to place, time, and his person. There were no clinical signs for cerebral metastases or increased intracerebral pressure. His pupils were equal in size and reacted to light. Respiratory rate and function was within normal range (10–16/min). The patient had had no treatment with psychopharmacologic drugs or chemotherapy causing sedation. When the pain service was called the pain intensity was 7 on the visual analog scale (VAS; range 0–10). Pain was insufficiently treated with dipyrone (4× 750 mg/day, a nonopioid analgesic without significant antiphlogistic properties) and tramadol (4× 75 mg/day) and subsequently changed to 30 mg/day of oral morphine slow release. One day after morphine administration had been initiated the patient was pain-free (VAS 0–1) but showed sedation level 3 (Sedation score; 0 = no sedation – 6 = not arousable) 2 and drowsiness. He was sleepy but always arousable and answered adequately to questions but initiated no activity on his own. The patient stayed in bed most of the day and had no appetite. Questions concerning orientation to place, time, or to his person were answered slowly. For walking, eating, and drinking he needed assistance. These symptoms developed during the first day of morphine treatment. 3 His relatives were upset by the change in his mental state, but on the other hand, were glad to see him with no or minimal pain. The patient's respiratory rate and function was sufficient, no bradypnea less than 8/min or cyanotic changes were seen. Pupil size was equal in both eyes and pupils were smaller in size than with the treatment before. Reaction to light was slower in both pupils than with tramadol. No other drugs were changed or added. Hemodialysis was not considered necessary. Because of the severe impairment of the patient's vigilance, morphine was discontinued (total given dose 60 mg) and replaced by 300 mg/day of a slow release tramadol formulation. Forty-eight hours later, the patient's sleepiness had disappeared and normal communication with him was possible. He became more active. In eating, drinking, and walking he was self-dependent again. Tramadol now provided sufficient pain relief. Plasma concentrations of morphine and M6G of 10 and 436 ng/ml, respectively, were measured during the time when the patient had a reduced vigilance.
The second patient, Patient S, was a 65-yr-old man (body weight 61.9 kg, height 168 cm) with advanced renal disease (serum creatinine of 8 mg/dl, calculated creatinine clearance 9 ml/min, blood urea nitrogen 137 mg/dl) caused by glomerulonephritis, failed kidney transplant, peripheral vascular disease with necrotic ulcerations at the right foot, and atrial fibrillation with pacemaker. The patient had increasing pain in his right foot for several days and weeks. Pain-intensity was scored with 9 on the visual analog scale (VAS 0–10). Sleep at night was disturbed because of the pain. His mental state was oriented in place, time, and to his person. Answers to questions came slowly. Respiratory function was normal and pupils reacted equally to light. Oral tilidine/naloxone (300 mg/day, a combination of a weak opioid with an antagonist to eliminate its intravenous abuse potential; tilidine is a prodrug that to become analgesic has to be metabolized to the active nortilidine, which happens mainly during the first-pass effect) and dipyrone (2 g/day) did not sufficiently reduce the patient's pain and were therefore replaced with 30 mg/day morphine plus dipyrone 4 g/day. A tricyclic antidepressant in a low dose of 5 mg doxepin at night was prescribed for sleeping. This regimen adequately relieved the patient's pain and was well tolerated. The pain intensity reduced to VAS 0–1 and sleep at night was possible again. Respiration was normal and pupil size smaller than before. Reaction to light was equal in both eyes. Most importantly, no alterations of the patient's vigilance state were seen. The patient was oriented to place, time, and his person at any time. With the reduced pain he was quicker in his reactions and answers than before. Plasma concentrations of morphine and M6G of 12.3 and 804 ng/ml, respectively, were measured on the eighth day after morphine therapy was begun.
Table 2
Table 2
Image Tools
Table 3
Table 3
Image Tools
Although direct comparison of the plasma samples of the two patients may be flawed by their different timing relative to morphine dosing, the concentrations clearly indicate M6G accumulation whereas morphine concentrations were low. Patient B corresponded to the cases of M6G toxicity listed in table 1 20,21,24–29. Neither disease state nor concomitant medications (table 2) provided a satisfactory explanation of why patient S showed no such side effects. We therefore screened the patients for genetic polymorphisms in the OPRM1-gene (coding the μ-opioid receptor). The motive to examine polymorphisms of the OPRM1-gene (table 3 8,9,23,30–34) derives mainly from our recent observation that the potency of M6G is decreased in carriers of the mutated G118 allele of the OPRM1-gene. 4 Specifically, the potency of M6G to produce pupil constriction in a homozygous carrier of the G118 mutated allele was significantly reduced by about four times compared with homozygous carriers of the wild-type allele A118. This makes this single nucleotide polymorphism (SNP) a candidate for explaining why the patient without side effects had sufficient analgesia from morphine while not suffering from central nervous opioid side effects caused by M6G accumulation.
In addition, we screened the patients for genetic polymorphisms in the genes that code for transporters that may play an important role for the CNS concentrations of morphine or M6G. Candidates of such transporters are P-glycoprotein (P-gp) or probenecid sensitive transporters, e.g., multidrug-resistance related proteins (MRP), organic anion transporters (OAT), or organic anion transporter polypeptides (OATP), which are all expressed at the blood brain barrier, and which have glucuronides among their substrates. The rationale for examining genetic polymorphisms of the MDR1 gene (table 3) is based on the evidence for P-gp expression at the blood-brain barrier 5 and on the report that the brain concentrations of M6G 6 and of morphine 7 are significantly increased when P-gp is blocked. In addition, it is known that genetic causes may modify the P-gp functionality. The C3435T SNP in the MDR1-gene is frequent among Caucasians (frequency of the mutated T3435 allele of about 50%. 8,9) It was shown to result in decreased intestinal P-gp expression with enhanced bioavailability of digoxin. 8 Screening for known polymorphisms of the MRP2 gene was motivated by the knowledge that glucuronides are possible substrates of it, 10 and that coadministration of probenecid, that inhibits MRP2, resulted in enhanced morphine antinociception in rats. 11 For the other candidate, probenecid sensitive transporters that might transport M6G such as OATs and OATPs, there are currently no SNPs known with consequences for the transporter function in general, or for the distribution of a specific pharmaceutical substance. Summaries of the human ABC transporters to which belong MDR1 and MRP can be found in Klein et al., 12 of OATP in Tamai et al., 13 and of OAT in Sweet et al. and Sekine et al. 14,15 The investigation's protocol had been approved by the Johann Wolfgang Goethe-University of Frankfurt Medical Faculty Ethics Review Board and the patients gave informed consent to enrollment and procedures. The guidelines of the Declaration of Helsinki on biomedical research involving human subjects (Somerset West amendment) were obeyed.
Back to Top | Article Outline
Screening for Single Nucleotide Polymorphisms of the Genes Coding μ-Opioid Receptors or ABC Transporters
Genomic DNA was prepared from a blood sample using standard techniques. SNPs were detected by sequence analysis, using products of the polymerase chain reaction (PCR) from LightCycler (Roche, Mannheim, Germany) reactions that had been performed as a screening test before sequencing. After purification with the QIAquick PCR purification kit (QIAGEN, Hilden, Germany) each sample was resuspended in 20 μl distilled water. Approximately 50 ng PCR product was analyzed using an ABI Prism BigDye Terminator Cycle Sequencing Kit (Perkin-Elmer/Applied Biosystems, Weiterstadt, Germany). For primers (TIB MOLBIOL, Berlin, Germany) used for sequencing see table 3. The PCR sequencing reaction was performed in a total volume of 10 μl containing 2 μl premix (AmpliTaq DNA polymerase, BigDye terminators (A-dR6G; C-dROX; G-dR110; T-dTAMRA), desoxynucleoside triphosphates, Mg2+, Tris-HCl pH 9,0), 1 μl PCR primer (10 μm), 3 μl purified PCR product from the LightCycler, and additional distilled water. After initial denaturation at 95°C for 3 min PCR was carried out with 25 cycles of denaturation (95°C, 10 s), annealing (55°C, 5 s), and extension (60°C, 90 s). To purify the sequenced PCR product the method of ethanol precipitation was applied. After drying the pellet for 5 min at 45°C in a vacuum centrifuge, it was resuspended in 25 μl Template Suppression Reagent (TSR, PE/Applied Biosystems, Weiterstadt, Germany). Analysis was carried out at an ABI PRISM 310 Genetic Analyzer (PE/Applied Biosystems, Weiterstadt, Germany).
Back to Top | Article Outline


Fig. 1
Fig. 1
Image Tools
Patient S, who tolerated morphine treatment despite high plasma M6G, was homozygous for the mutated G118 allele of the OPRM1 gene, whereas patient B, whose vigilance was severely impaired, was a homozygous carrier of the wild-type allele A118 (Fig. 1). In the other SNPs searched for in the OPRM1, MDR1, and MRP2 genes, the patients did not differ (table 3).
Back to Top | Article Outline


Considering our recent report of a decreased potency of M6G in carriers of the mutated G118 allele of the OPRM1 gene, 4 we would like to hypothesize that the A118G SNP could be a reason why one patient tolerated very high M6G plasma concentrations whereas the other patient showed typical opioid CNS side effects. The specific relation of the vigilance effects to morphine/M6G is emphasized by their disappearance after morphine had been replaced by tramadol. The latter also makes a pharmacodynamic interaction between coadministered quinolones or β-blockers as the cause for the CNS side effects unlikely. Such an assumption would require an explanation of why the interaction happened with morphine only, but not with tramadol, which is partly a μ-opioid agonist. Another drug interaction with morphine, M6G, or both may be caused by omeprazol, which has recently been reported to block P-gp. 16 By this mechanism, and assuming that M6G is a substrate of P-gp, the M6G concentrations in the CNS could have been increased in patient B. However, it is reported that omeprazol is likely to reach plasma concentrations high enough to block P-gp only in cytochrome P450 (CYP) 2C19 poor-metabolizers, who eliminate omeprazol slowly. Patient B, however, showed an extensive metabolizer phenotype predicted on the basis of genotyping for the most relevant defective alleles CYP2C19 *2 and *3. 17,18 By this, together with the identical genotype of the patients with respect to MDR1, P-gp blockade mediated M6G 6 or morphine 7 accumulation in the CNS are not more likely to have occurred in patient B than in patient S.
Because morphine-3-glucuronide (M3G) has been hypothesized to be a functional antagonist of morphine and M6G, 19 the side effects of M6G in patient S could have been antagonized by his higher plasma M3G compared to patient B. However, the elimination of M6G and M3G is equally affected in patients with renal failure, as indicated by an almost straight-line correlation between M3G and M6G plasma concentrations over a wide range of serum creatinine values. 20 The assumption of such protection raises the questions why patients ever develop M6G toxicity and are not always protected from it by M3G. The M3G:M6G concentration ratios of 3.9 and 4.8 for patient B and patient S, respectively, are both within the range of those calculated from the reported concentrations values of M3G and M6G from patients with renal failure and M6G-caused side effects during morphine therapy (2.1 to 7.6, table 1). Even a ratio of 7.6 or 8.4 did not protect other patients from long-lasting M6G induced coma 21 or other opioid side effects, 20 respectively. Furthermore, the hypothesis of M3G as an antagonist of the depressing actions of morphine and M6G has been repeatedly contradicted. 22
Age might explain why patient B, aged 87, was more susceptible to the central depressing effects of M6G than 67-yr-old patient S. Another factor that might have contributed to the difference in M6G-tolerability between the patients might be the development of opioid tolerance in patient S. He was treated with morphine for a longer period of time than patient B, and one could speculate that the intolerance of morphine treatment of patient B would have disappeared later because of tolerance development. However, in contrast to patient B, patient S tolerated morphine from the beginning of the therapy.
The mutated G118 allele has a frequency among Caucasians of about 11.5%. 23 The expected frequency of homozygous and heterozygous patients is approximately 2 and 20%, respectively. Clinical experience suggests that more than one-fifth of the subjects receiving morphine despite renal dysfunction tolerate that treatment without developing severe side effects. Thus, the G118 may be one but not the only factor that protects a patient with renal failure from M6G-related opioid toxicity. On the other hand, there might be additional risk factors for M6G toxicity such as age, drug interactions, or disease state. To enlarge the support of our hypothesis of a protective effect of the G118 allele against M6G toxicity, and to identify other factors that play a role in the development of side effects, more patients need to be studied. Nonetheless, the evidence presented here encourages the hope that pharmacogenetics will provide a finer tool to individualize therapy than blunt contraindication of morphine for patients with renal failure.
The authors thank the Deutsche Forschungsgemeinschaft (Bonn, Germany: DFG Lo 612/3-3) for project funding, and TIB MOLBIOL (Berlin, Germany) for help with the PCR-primer design.
Back to Top | Article Outline


1. Lötsch J, Weiss M, Ahne G, Kobal G, Geisslinger G: Pharmacokinetic modeling of M6G formation after oral administration of morphine in healthy volunteers. A nesthesiology 1999; 90: 1026–38

2. Engelhardt W, Friess K, Hartung E, Sold M, Dierks T: EEG and auditory evoked potential P300 compared with psychometric tests in assessing vigilance after benzodiazepine sedation and antagonism. Br J Anaesth 1992; 69: 75–80

3. Cherny N, Ripamonti C, Pereira J, Davis C, Fallon M, McQuay H, Mercadante S, Pasternak G, Ventafridda V: Strategies to manage the adverse effects of oral morphine: An evidence-based report. J Clin Oncol 2001; 19: 2542–54

4. Lötsch J, Skarke C, Grösch S, Darimont J, Schmidt H, Geisslinger G: The polymorphism A118G of the human mu-opioid receptor gene decreases the clinical activity of morphine-6-glucuronide but not that of morphine. Pharmacogenetics 2002; 12: 3–9

5. Demeule M, Labelle M, Regina A, Berthelet F, Beliveau R: Isolation of endothelial cells from brain, lung, and kidney: Expression of the multidrug resistance P-glycoprotein isoforms. Biochem Biophys Res Commun 2001; 281: 827–34

6. Huwyler J, Drewe J, Klusemann C, Fricker G: Evidence for P-glycoprotein-modulated penetration of morphine-6- glucuronide into brain capillary endothelium. Br.J.Pharmacol 1996; 118: 1879–85

7. King M, Su W, Chang A, Zuckerman A, Pasternak GW: Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 2001; 4: 268–74

8. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U: Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–8

9. Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, Schwab M, Schaeffeler E, Eichelbaum M, Brinkmann U, Roots I: Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2001; 69: 169–74

10. Keppler D, Leier I, Jedlitschky G: Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol Chem 1997; 378: 787–91

11. Morin RA, Lyness WH: Potentiation of morphine analgesia after pretreatment with probenecid or sulfinpyrazone. Pharmacol Biochem Behav 1983; 18: 885–9

12. Klein I, Sarkadi B, Varadi A: An inventory of the human ABC proteins. Biochim Biophys Acta 1999; 1461: 237–62

13. Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A: Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res 2001; 18: 1262–9

14. Sweet DH, Bush KT, Nigam SK: The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Physiol Renal Physiol 2001; 281: F197–205

15. Sekine T, Cha SH, Endou H: The multispecific organic anion transporter (OAT) family. Pflugers Arch 2000; 440: 337–50

16. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF: Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol 2001; 364: 551–7

17. Xie HG, Stein CM, Kim RB, Wilkinson GR, Flockhart DA, Wood AJ: Allelic, genotypic and phenotypic distributions of S-mephenytoin 4’-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 1999; 9: 539–49

18. Griese EU, Lapple F, Eichelbaum M: Detection of CYP2C19 alleles *1, *2 and *3 by multiplex polymerase chain reaction. Pharmacogenetics 1999; 9: 389–91

19. Gong QL, Hedner J, Bjorkman R, Hedner T: Morphine-3-glucuronide may functionally antagonize morphine-6- glucuronide induced antinociception and ventilatory depression in the rat. Pain 1992; 48: 249–55

20. Ashby M, Fleming B, Wood M, Somogyi A: Plasma morphine and glucuronide (M3G and M6G) concentrations in hospice inpatients. J Pain Symptom Manage 1997; 14: 157–67

21. Angst MS, Bührer M, Lötsch J: Insidious Intoxication After Morphine Treatment in Renal Failure: Delayed Onset of Morphine-6-glucuronide Action. A nesthesiology 2000; 92: 1473–6

22. Suzuki N, Kalso E, Rosenberg PH: Intrathecal morphine-3-glucuronide does not antagonize spinal antinociception by morphine or morphine-6-glucuronide in rats. Eur.J.Pharmacol 1993; 249: 247–50

23. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L: Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 1998; 95: 9608–13

24. Osborne RJ, Joel SP, Slevin ML: Morphine intoxication in renal failure: the role of morphine-6- glucuronide. Br Med J Clin Res Ed 1986; 292: 1548–9

25. Tiseo PJ, Thaler HT, Lapin J, Inturrisi CE, Portenoy RK, Foley KM: Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients. Pain 1995; 61: 47–54

26. Hagen NA, Foley KM, Cerbone DJ, Portenoy RK, Inturrisi CE: Chronic nausea and morphine-6-glucuronide. J Pain Symptom Manage 1991; 6: 125–8

27. Hasselström J, Berg U, Lofgren A, Säwe J: Long lasting respiratory depression induced by morphine-6- glucuronide? Br J Clin Pharmacol 1989; 27: 515–8

28. Bodd E, Jacobsen D, Lund E, Ripel A, Morland J, Wiik L: Morphine-6-glucuronide might mediate the prolonged opioid effect of morphine in acute renal failure. Hum Exp Toxicol 1990; 9: 317–21

29. Bion JF, Logan BK, Newman PM, Brodie MJ, Oliver JS, Aitchison TC, Ledingham IM: Sedation in intensive care: morphine and renal function. Intensive Care Med 1986; 12: 359–65

30. Uhl GR, Sora I, Wang Z: The mu opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses. Proc Natl Acad Sci USA 1999; 96: 7752–5

31. Berrettini WH, Hoehe MR, Ferraro TN, Demaria PA, Gottheil E.: Human mu opioid receptor gene polymorphisms and vulnerability to substance abuse. Addiction Biology 1997; 2: 303–8

32. Bergen AW, Kokoszka J, Peterson R, Long JC, Virkkunen M, Linnoila M, Goldman D: Mu opioid receptor gene variants: Lack of association with alcohol dependence. Mol Psychiatry 1997; 2: 490–4

33. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL: A single-nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem 2001; 276: 3130–7

34. Ito S, Ieiri I, Tanabe M, Suzuki A, Higuchi S, Otsubo K: Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics 2001; 11: 175–84

Cited By:

This article has been cited 65 time(s).

Molecular Brain
Combined analysis of circulating beta-endorphin with gene polymorphisms in OPRM1, CACNAD2 and ABCB1 reveals correlation with pain, opioid sensitivity and opioid-related side effects
Rhodin, A; Gronbladh, A; Ginya, H; Nilsson, KW; Rosenblad, A; Zhou, Q; Enlund, M; Hallberg, M; Gordh, T; Nyberg, F
Molecular Brain, 6(): -.
British Journal of Anaesthesia
Influence of anaesthesia and analgesia on the control of breathing
Dahan, A; Teppema, LJ
British Journal of Anaesthesia, 91(1): 40-49.
International Journal of Obstetric Anesthesia
Pharmacogenetics: implications for obstetric anesthesia
Landau, R
International Journal of Obstetric Anesthesia, 14(4): 316-323.
Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene
Reyes-Gibb, CC; Shete, S; Rakvag, T; Bhat, SV; Skorpen, F; Bruera, E; Kaasa, S; Klepstad, P
Pain, 130(): 25-30.
European Journal of Pain
High post surgical opioid requirements in Crohn's disease are not due to a general change in pain sensitivity
Huehne, K; Leis, S; Muenster, T; Wehrfritz, A; Winter, S; Maihofner, C; Foertsch, T; Croner, R; Reis, A; Winterpacht, A; Rautenstrauss, B
European Journal of Pain, 13(): 1036-1042.
Palliative Medicine
Variable response to opioid treatment: any genetic predictors within sight?
Skorpen, F; Laugsand, EA; Klepstad, P; Kaasa, S
Palliative Medicine, 22(4): 310-327.
Meta-analysis of the relevance of the OPRM1 118A > G genetic variant for pain treatment
Walter, C; Lotsch, J
Pain, 146(3): 270-275.
Pharmacology & Therapeutics
Genetic modulation of the pharmacological treatment of pain
Lotsch, J; Geisslinger, G; Tegeder, I
Pharmacology & Therapeutics, 124(2): 168-184.
Acta Anaesthesiologica Scandinavica
The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease
Klepstad, P; Rakvag, TT; Kaasa, S; Holthe, M; Dale, O; Borchgrevink, PC; Baar, C; Vikan, T; Krokan, HE; Skorpen, F
Acta Anaesthesiologica Scandinavica, 48(): 1232-1239.
Supportive Care in Cancer
Gaps and junctions between clinical experience and theoretical framework in the use of opioids
Kloke, M
Supportive Care in Cancer, 12(): 749-751.
Trends in Pharmacological Sciences
How individual sensitivity to opiates can be predicted by gene analyses
Ikeda, K; Ide, S; Han, WH; Hayashida, M; Uhl, GR; Sora, I
Trends in Pharmacological Sciences, 26(6): 311-317.
Acta Clinica Belgica
The puzzle of chronic pain: Will genetics force a major breakthrough in the pathophysiology and the treatment of chronic pain?
Devulder, JER
Acta Clinica Belgica, 61(1): 1-4.

Anasthesiologie & Intensivmedizin
The importance of genetics for anaesthesiology
Stuber, F; Book, M; Klaschik, S; Lehmann, L; Schewe, JC; Hoeft, A; Stamer, U
Anasthesiologie & Intensivmedizin, 45(): 415-426.

Pharmacogenomics Journal
Relevance of frequent mu-opioid receptor polymorphisms for opioid activity in healthy volunteers
Lotsch, J; Geisslinger, G
Pharmacogenomics Journal, 6(3): 200-210.
Biochemical Pharmacology
In vivo chronic exposure to heroin or naltrexone selectively inhibits liver microsome formation of estradiol-3-glucuronide in the rat
Antonilli, L; Brusadin, V; Milella, MS; Sobrero, F; Badiani, A; Nencini, P
Biochemical Pharmacology, 76(5): 672-679.
Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women
Landau, R; Kern, C; Columb, MO; Smiley, RM; Blouin, JL
Pain, 139(1): 5-14.
Drug and Alcohol Dependence
Non-opioid induction of morphine-6-glucuronide synthesis is elicited by prolonged exposure of rat hepatocytes to heroin
Graziani, M; Antonilli, L; Togna, AR; Brusadin, V; Viola, S; Togna, G; Badiani, A; Nencini, P
Drug and Alcohol Dependence, 98(3): 179-184.
European Journal of Clinical Pharmacology
Pharmacokinetics and dosage adjustment in patients with renal dysfunction
Verbeeck, RK; Musuamba, FT
European Journal of Clinical Pharmacology, 65(8): 757-773.
Molecular Diagnosis & Therapy
Interindividual variability of methadone response - Impact of genetic polymorphism
Li, YF; Kantelip, JP; Gerritsen-van Schieveen, P; Davani, S
Molecular Diagnosis & Therapy, 12(2): 109-124.

Clinical Pharmacokinetics
Bioequivalence Criteria for Transdermal Fentanyl Generics Do These Need a Relook?
Walter, C; Felden, L; Lotsch, J
Clinical Pharmacokinetics, 48(): 625-633.

Clinical Pharmacokinetics
Pharmacology of Morphine in Obese Patients Clinical Implications
Linares, CL; Decleves, X; Oppert, JM; Basdevant, A; Clement, K; Bardin, C; Scherrmann, JM; Lepine, JP; Bergmann, JF; Mouly, S
Clinical Pharmacokinetics, 48(): 635-651.

Acta Anaesthesiologica Scandinavica
Genetic variability and clinical efficacy of morphine
Klepstad, P; Dale, O; Skorpen, F; Borchgrevink, PC; Kaasa, S
Acta Anaesthesiologica Scandinavica, 49(7): 902-908.
Anaesthesia and Intensive Care
Acute pain management pharmacology for the patient with concurrent renal or hepatic disease
Murphy, EJ
Anaesthesia and Intensive Care, 33(3): 311-322.

Natural Product Reports
beta-phenylethylamines and the isoquinoline alkaloids
Bentley, KW
Natural Product Reports, 21(3): 395-424.
Anesthesia and Analgesia
Morphine-6-glucuronide: Morphine's successor for postoperative pain relief?
van Dorp, ELA; Romberg, R; Sarton, E; Bovill, JG; Dahan, A
Anesthesia and Analgesia, 102(6): 1789-1797.
Bmc Medical Genetics
Association between single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) and self-reported responses to alcohol in American Indians
Ehlers, CL; Lind, PA; Wilhelmsen, KC
Bmc Medical Genetics, 9(): -.
Trends in Molecular Medicine
Are mu-opioid receptor polymorphisms important for clinical opioid therapy?
Lotsch, J; Geisslinger, G
Trends in Molecular Medicine, 11(2): 82-89.
Medicinal Research Reviews
Morphine-6-glucuronide: Actions and mechanisms
Kilpatrick, GJ; Smith, TW
Medicinal Research Reviews, 25(5): 521-544.
Genetics, pain and analgesia
Stamer, U; Bayerer, B; Stuber, F
Anaesthesist, 55(7): 746-752.
Clinical pharmacology and pharmacotherapy of opioid switching in cancer patients
Ross, JR; Riley, J; Quigley, C; Welsh, KI
Oncologist, 11(7): 765-773.

European Journal of Pain
Genetics and variability in opioid response
Stamer, UM; Bayerer, B; Stuber, F
European Journal of Pain, 9(2): 101-104.
Anesthesia and Analgesia
A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain
Janicki, PK; Schuler, G; Francis, D; Bohr, A; Gordin, V; Jarzembowski, T; Ruiz-Velasco, V; Mets, B
Anesthesia and Analgesia, 103(4): 1011-1017.
Presse Medicale
Genetic polymorphisms and opioid therapies
Landau, R
Presse Medicale, 37(): 1415-1422.
Expert Opinion on Drug Metabolism & Toxicology
Role of pharmacogenetics in variable response to drugs: focus on opioids
Kadiev, E; Patel, V; Rad, P; Thankachan, L; Tram, A; Weinlein, M; Woodfin, K; Raffa, RB; Nagar, S
Expert Opinion on Drug Metabolism & Toxicology, 4(1): 77-91.
Journal of Neurochemistry
Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor
Beyer, A; Koch, T; Schroder, H; Schulz, S; Hollt, V
Journal of Neurochemistry, 89(3): 553-560.
Journal of Cardiothoracic and Vascular Anesthesia
Pharmacogenetics as related to the practice of cardiothoracic and vascular anesthesia
Bukaveckas, BL; Valdes, R; Linder, MW
Journal of Cardiothoracic and Vascular Anesthesia, 18(3): 353-365.

Medical Science Monitor
Morphine 6 beta glucuronide: Fortuitous morphine metabolite or preferred peripheral regulatory opiate?
Mantione, KJ; Goumon, Y; Esch, T; Stefano, GB
Medical Science Monitor, 11(5): MS43-MS46.

Oncology-New York
Opioid rotation in cancer patients: Pros and cons
Estfan, B; Legrand, SB; Walsh, D; Lagman, RL; Davis, MP
Oncology-New York, 19(4): 511-516.

Journal of Neurophysiology
Modulation of Ca2+ channels by heterologously expressed wild-type and mutant human mu-opioid receptors (hMORs) containing the A118G single-nucleotide polymorphism
Margas, W; Zubkoff, I; Schuler, HG; Janicki, PK; Ruiz-Velasco, V
Journal of Neurophysiology, 97(2): 1058-1067.
Expert Opinion on Pharmacotherapy
The pharmacogenetics of analgesia
Stamert, UM; Stuber, F
Expert Opinion on Pharmacotherapy, 8(): 2235-2245.
Medical Hypotheses
Hypothesizing that brain reward circuitry genes are genetic antecedents of pain sensitivity and critical diagnostic and pharmacogenomic treatment targets for chronic pain conditions
Chen, ALC; Chen, TJH; Waite, RL; Reinking, J; Tung, HL; Rhoades, P; Downs, BW; Braverman, E; Braverman, D; Kerner, M; Blum, SH; DiNubile, N; Smith, D; Oscar-Berman, M; Prihoda, TJ; Floyd, JB; O'Brien, D; Liu, HH; Blum, K
Medical Hypotheses, 72(1): 14-22.
European Journal of Pain
Impact of genetic variants on pain and analgesia
Stamer, UM; Zhang, L; Stuber, F
European Journal of Pain, (): 18-24.

Endogenous opiates and behavior: 2002
Bodnar, RJ; Hadjimarkou, MM
Peptides, 24(8): 1241-1302.
Clinical Chemistry
Comprehensive mu-opioid-receptor genotyping by pyrosequencing
Skarke, C; Kirchhof, A; Geisslinger, G; Lotsch, J
Clinical Chemistry, 50(3): 640-644.
Pain Management Nursing
Mechanisms of opioid-induced tolerance and hyperalgesia
Dupen, A; Shen, D; Ersek, M
Pain Management Nursing, 8(3): 113-121.
Pharmacogenomics Journal
Clinical response to morphine in cancer patients and genetic variation in candidate genes
Ross, JR; Rutter, D; Welsh, K; Joel, SP; Goller, K; Wells, AU; Du Bois, R; Riley, J
Pharmacogenomics Journal, 5(5): 324-336.
Effect of repeated administrations of heroin, naltrexone, methadone, and alcohol on morphine glucuronidation in the rat
Antonilli, L; Petecchia, E; Caprioli, D; Badiani, A; Nencini, P
Psychopharmacology, 182(1): 58-64.
Journal of Cellular and Molecular Medicine
Current evidence for a modulation of low back pain by human genetic variants
Tegeder, I
Journal of Cellular and Molecular Medicine, 13(): 1605-1619.
Postoperative pain therapy in orthopedics
Zimmermann, M; Rittmeister, M
Orthopade, 32(): 1110-+.
Are polymorphisms in the mu-opioid receptor important for opioid therapy?
Lotsch, L; Freynhagen, R; Geisslinger, G
Schmerz, 19(5): 378-+.
Current evidence for a genetic modulation of the response to analgesics
Lotsch, J; Geisslinger, G
Pain, 121(): 1-5.
Aaps Journal
Role of morphine's metabolites in analgesia: Concepts and controversies
Wittwer, E; Kern, SE
Aaps Journal, 8(2): E348-E352.

Acta Anaesthesiologica Scandinavica
Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty
Chou, WY; Yang, LC; Lu, HF; Ko, JY; Wang, CH; Lin, SH; Lee, TH; Concejero, A; Hsu, CJ
Acta Anaesthesiologica Scandinavica, 50(7): 787-792.
Clinical Pharmacology & Therapeutics
Pharmacogenetics of opioids
Somogyi, AA; Barratt, DT; Coller, JK
Clinical Pharmacology & Therapeutics, 81(3): 429-444.
Pain Research & Management
Life-threatening adverse events following therapeutic opioid administration in adults: Is pharmacogenetic analysis useful?
Madadi, P; Sistonen, J; Silverman, G; Gladdy, R; Ross, CJ; Carleton, BC; Carvalho, JC; Hayden, MR; Koren, G
Pain Research & Management, 18(3): 133-136.

Pharmacodynamic Effect of Morphine-6-glucuronide versus Morphine on Hypoxic and Hypercapnic Breathing in Healthy Volunteers
Romberg, R; Olofsen, E; Sarton, E; Teppema, L; Dahan, A
Anesthesiology, 99(4): 788-798.

PDF (451)
Differential Effect of Morphine and Morphine-6-glucuronide on the Control of Breathing in the Anesthetized Cat
Teppema, LJ; van Dorp, E; Gourabi, BM; van Kleef, JW; Dahan, A
Anesthesiology, 109(4): 689-697.
PDF (966) | CrossRef
A118G Single Nucleotide Polymorphism of Human μ-Opioid Receptor Gene Influences Pain Perception and Patient-controlled Intravenous Morphine Consumption after Intrathecal Morphine for Postcesarean Analgesia
Sia, AT; Lim, Y; Lim, EC; Goh, RW; Law, HY; Landau, R; Teo, Y; Tan, EC
Anesthesiology, 109(3): 520-526.
PDF (341) | CrossRef
Predicting Postoperative Pain by Preoperative Pressure Pain Assessment
Hsu, Y; Somma, J; Hung, Y; Tsai, P; Yang, C; Chen, C
Anesthesiology, 103(3): 613-618.

PDF (319)
Genetic Variability of μ-Opioid Receptor in an Obstetric Population
Landau, R; Cahana, A; Smiley, RM; Antonarakis, SE; Blouin, J
Anesthesiology, 100(4): 1030-1033.

PDF (786)
Pharmacokinetic-Pharmacodynamic Modeling of Morphine-6-glucuronide-induced Analgesia in Healthy Volunteers: Absence of Sex Differences
Romberg, R; Olofsen, E; Sarton, E; den Hartigh, J; Taschner, PE; Dahan, A
Anesthesiology, 100(1): 120-133.

PDF (590)
Polymorphism of μ-Opioid Receptor Gene (OPRM1:c.118A>G) Does Not Protect Against Opioid-induced Respiratory Depression despite Reduced Analgesic Response
Romberg, RR; Olofsen, E; Bijl, H; Taschner, PE; Teppema, LJ; Sarton, EY; van Kleef, JW; Dahan, A
Anesthesiology, 102(3): 522-530.

PDF (717)
One Size Does Not Fit All: Genetic Variability of μ-Opioid Receptor and Postoperative Morphine Consumption
Landau, R
Anesthesiology, 105(2): 235-237.

PDF (350)
Pharmacogenetics of Anesthetic and Analgesic Agents
Palmer, SN; Giesecke, NM; Body, SC; Shernan, SK; Fox, AA; Collard, CD
Anesthesiology, 102(3): 663-671.

PDF (402)
Pharmacogenetics and Genomics
The μ-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers
Oertel, BG; Schmidt, R; Schneider, A; Geisslinger, G; Lötsch, J
Pharmacogenetics and Genomics, 16(9): 625-636.
PDF (240) | CrossRef
Back to Top | Article Outline

© 2002 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.

Article Tools