Skip Navigation LinksHome > April 2002 - Volume 96 - Issue 4 > Performance of the ARX-derived Auditory Evoked Potential Ind...
Anesthesiology:
Clinical Investigations

Performance of the ARX-derived Auditory Evoked Potential Index as an Indicator of Anesthetic Depth: A Comparison with Bispectral Index and Hemodynamic Measures during Propofol Administration

Struys, Michel M. R. F. M.D., Ph.D.*; Jensen, Erik Weber Ph.D.†; Smith, Warren Ph.D.‡; Smith, N. Ty M.D.§; Rampil, Ira M.S., M.D.∥; Dumortier, Frank J. E. M.D.#; Mestach, Christel M.D.**; Mortier, Eric P. M.D., D.Sc.††

Free Access
Supplemental Author Material
Article Outline
Collapse Box

Author Information

Collapse Box

Abstract

Background: Autoregressive modeling with exogenous input of middle-latency auditory evoked potential (A-Line autoregressive index [AAI]) has been proposed for monitoring anesthetic depth. The aim of the current study was to compare the accuracy of this new index with the Bispectral Index (BIS), predicted effect-site concentration of propofol, and hemodynamic measures.
Methods: Twenty female patients scheduled for ambulatory gynecologic surgery received effect compartment controlled infusion of propofol. Target effect-site concentration was started at 1.5 μg/ml and increased every 4 min by 0.5 μg/ml. At every step, sedation level was compared with monitoring values using different clinical scoring systems and reaction to noxious stimulus.
Results: Bispectral Index, AAI, and predicted propofol effect-site concentration were accurate indicators for the level of sedation and loss of consciousness. Hemodynamic variables were poor indicators of the hypnotic-anesthetic status of the patient. BIS correlated best with propofol effect-site concentration, followed by AAI. Hemodynamic measurements did not correlate well. No indicators predicted reaction to noxious stimulus. Poststimulus, BIS and AAI showed an increase as a result of arousal. This reaction occurred more rapidly with the AAI than with BIS.
Conclusion: Bispectral Index, AAI, and predicted propofol effect-site concentration revealed information on the level of sedation and loss of consciousness but did not predict response to noxious stimulus.
Back to Top | Article Outline

ArticlePlus

Click on the links below to access all the ArticlePlus for this article.
Please note that ArticlePlus files may launch a viewer application outside of your web browser.
* http://links.lww.com/ALN/A129
* http://links.lww.com/ALN/A130
* http://links.lww.com/ALN/A131
BOTH electroencephalography and middle-latency auditory evoked potentials (MLAEP) have been proposed as monitors of the hypnotic state during anesthesia. 1 The waveforms of both raw measures require real-time quantification to become useful in clinical anesthesia practice. For electroencephalography, the Bispectral Index (BIS) incorporated in the A2000 BIS® monitor (Aspect Medical Systems Inc., Newton, MA) has been proven to have a high sensitivity and specificity compared with other processed electroencephalograpic variables. 2,3 For MLAEP, Mantzaridis and Kenny 4 extracted a single numerical variable, called the auditory evoked potential (AEP) index, applying a proprietary algorithm that uses a moving time average to extract the AEP waveform followed by the calculation of the sum, over the waveform, of the square root of the absolute difference between every two successive segments of that AEP waveform. As described, this classic moving time average method requires 256 sweeps, each of 144-ms duration, creating a response delay time of 36.9 s. This large number of sweeps is required to obtain an acceptable signal-to-noise ratio for the AEP, and this method is therefore poorly suited to recording changeable AEPs, which is the case during anesthesia. Throughout the last two decades, a number of methods have been applied to facilitate a single-sweep or a few-sweep extraction of the AEP. 5–7 Recently, Jensen et al.8 developed a new method for extracting the MLAEP from the electroencephalographic signal using an autoregressive model with an exogenous input (ARX) adaptive method (more details are provided later in the article). This method allows extraction of the AEP signal within 15–25 sweeps of 110-ms duration, resulting in only a 6-s response delay time. A new variable, called the A-Line ARX Index (AAI), is then calculated from this fast-extracted MLAEP wave. This new technology was incorporated in a recently commercialized system called A-Line® (A-Line Monitor; Danmeter A/S, Odense, Denmark).
This ARX-extracted AEP index may be as accurate as and is significantly faster than the 256-sweep moving time average method in detecting arousal reaction after tracheal intubation. 9 Other methods for processed electroencephalography and MLAEP have been recently proposed, 3,10–12 although only the tested indices, BIS and AAI, have become commercially available.
The purpose of the current study was to test the performance and reliability of BIS, AAI, predicted propofol effect-site concentration, and classic hemodynamic variables as indicators of the level of consciousness (defined by the responsiveness scores of the modified Observer's Assessment of Alertness/Sedation scale [OAA/S]13 and loss of eyelash reflex). In addition, we tested the ability of the proposed indicators to predict movement as a reaction to noxious stimulus. In an interference analysis, the possible alteration of the BIS value caused by the auditory input (“clicks”) from the A-Line® monitor was evaluated.
Back to Top | Article Outline

Methods and Materials

After obtaining approval from the Institutional Ethics Committee (Ghent University Hospital, Gent, Belgium), informed consent was obtained from 20 female patients (American Society of Anesthesiologists physical status I, aged 18–60 yr) scheduled for ambulatory gynecologic surgery. Exclusion criteria included weight less than 70% or more than 130% of ideal body weight, neurologic disorder, and recent use of psychoactive medication, including alcohol.
Propofol was administered via a computer-assisted continuous-infusion device to a target effect-site concentration (RUGLOOP ‡‡) using a three-compartment model enlarged with an effect-site compartment, previously published by Schnider et al.14,15 The target effect-site concentration of propofol (Ce propofol) was computed to yield a time-to-peak effect 16 of 1.6 min after bolus injection, as also published by Schnider et al.14,15 and clinically confirmed by Struys et al.17 Propofol infusion was administered using a Fresenius Modular DPS Infusion Pump connected to a Fresenius Base A (Fresenius Vial Infusion Systems, Brézins, France). The computer ran RUGLOOP monitors and drove the pump at infusion rates between 0 and 1,200 ml/h via an RS-232 interface. Using this infusion technique, we were able to obtain a steady state condition for propofol at every target concentration after 4-min infusion. The initial propofol target effect-site concentration was set at 1.5 μg/ml and was increased every 4 min by 0.5 μg/ml until loss of all relevant clinical signs was observed (explanation to come). Propofol was infused via a large left forearm vein. Every patient received approximately 200 ml of crystalloid fluid during the study period. No fluid load was given before induction. No patient received preanesthetic medication. No other drugs were given. All patients maintained spontaneous ventilation via a face mask delivering 100% oxygen.
Fig. 1
Fig. 1
Image Tools
Heart rate and noninvasive blood pressure, oxygen saturation, and capnography were recorded at 1-min intervals using an AS3® monitor (Datex, Helsinki, Finland). BIS® (version 3.4) was derived from the frontal electroencephalography (At-Fpzt) and calculated by the A-2000 BIS® monitor using 3 BIS®-Sensor electrodes (Aspect Medical Systems, Inc.). The smoothening time of the BIS® monitor was set at 30 s. The AAI from the MLAEP was calculated using the A-Line® monitor. The MLAEP were elicited with a bilateral click stimulus of 70-dB intensity and 2-ms duration. Three electrodes (A-Line® AEP electrodes; Danmeter A/S) were positioned at mid-forehead (+), left forehead (reference) and left mastoid (−). The extraction of the MLAEP using a short moving time average together with an ARX model and the calculations of the AAI are described in Appendix 1, which can be found on the Anesthesiology Web site. Figure 1 shows a flow chart of the signal processing.
Table 1
Table 1
Image Tools
Before each increase in target concentration (after 4-min infusion at the specific target effect-site concentration), measures of BIS, AAI, hemodynamic variables, level of consciousness (using the modified OAA/S score shown in table 1 and the response to eyelash reflex), and reaction to noxious stimulus were recorded (more details are provided later in the article). The sequence of testing was always the same: first the “electronic indicators,” then the eyelash reflex test, followed by the OAA/S score. The response to noxious stimulus was recorded last.
The responsiveness component of the OAA/S scale (table 1) is an assessment procedure involving a presentation of progressively more intense stimulation, ranging from a moderate speaking voice to physical shaking or moderate noxious stimulus (trapezius squeeze) until response is observed. Patients were considered to have loss of consciousness at the transition between level 3 and level 2.
For measuring the reaction to noxious stimulus, a tetanic electrical stimulus (100 Hz, 50 mA) for 2 s was applied to the volar forearm level. To examine the possible change in BIS and AAI as a reaction to the stimulation sequence at each propofol concentration, we recorded latency and peak value of change in BIS and AAI until 1 min after stimulus.
Both BIS and AAI indices were also logged automatically. RUGLOOP digitally recorded the BIS each 10 s, and the A-Line® monitor recorded AAI index values nominally each 8 s. The time marks of both systems were synchronized with the manual timing for stimulus and manually recorded events to within ± 1 s.
Back to Top | Article Outline
Statistical Analysis
Significance level was set at 5% unless otherwise reported. Because some of the data violated the normality rules (tested with a chi-square test), we used nonparametric statistics. Spearman rank-order correlation analysis was performed to evaluate the relation between each measure and the propofol effect-site concentration. To evaluate the significance between the obtained Spearman rank correlation coefficients, a specific comparison test, described by Steiger, 18 was used.
To analyze the significant changes in each indicator (BIS, AAI, Ce propofol, heart rate, blood pressure) at different levels of the OAA/S score, a Friedman analysis was used. When P was < 0.05, a Wilcoxon signed rank test was used to distinguish significance between specific levels. To determine significant changes in each measurement during loss of eyelash reflex and loss of response to noxious stimulus, a Wilcoxon signed rank test was used.
The ability of the different indicators to describe depth of sedation, loss of consciousness, and response to noxious stimulus was evaluated using prediction probability (PK), which compares the performance of indicators having different units of measurements, as developed by Smith et al.19,20 Consider a predicting indicator such as BIS or AAI and a gold-standard measure of anesthetic depth such as the multilevel OAA/S score or the two-level responsiveness (yes–no) to eyelash reflex or noxious stimulus. Then, a PK of 1 for the BIS or AAI indicator would mean that BIS or AAI always increases (decreases) as the patient gets lighter (deeper) according to the gold-standard depth measure. Such an indicator can perfectly predict anesthetic depth. Alternatively, a PK value of 0.5 would mean that the indicator is useless for predicting anesthetic depth. A PK value of −1 also means a perfect indicator, once the direction of the scale is reversed. For the OAA/S score, a PK value was computed for all assessments combined. Similarly, PK values for all eyelash reflex responses and response to noxious stimulus assessments were determined. The jackknife method was used to compute the SE of the estimate, based on the assumption that all assessments were independent. A paired-data jackknife analysis 19,20 was used to evaluate whether the PK for one variable was different from another one. Bonferroni correction was used to the paired-data jackknife analysis to correct for multiple comparisons. Significance level was set at 0.01. Prediction probability was calculated using a custom spreadsheet macro, PKMACRO, developed by one of the authors (W. S.). The power on the PK values was calculated using a t statistic defined as the quotient between the difference considered of clinical importance and the SE of the difference between two indicators. Assuming a PK difference of 0.05 as being of clinical importance, then 20 patients should be included to find significant differences with a P < 0.01. The SE assumption was based on previous results of the AAI and other AEP indicators. 10
After the PK analysis, three measures were found to merit further analysis: BIS, AAI, and Ce propofol. For these variables, median effective dose (ED50) and ED95 were evaluated using a Probit procedure for the levels of the OAA/S score until loss of consciousness, for loss of eyelash reflex, and for loss of response to noxious stimulus. Goodness-of-fit tests for the Probit analyses are based on the Pearson chi-square test. Large P values for these tests indicate that the fitted model agrees well with the data. P < 0.05 indicates that the fitted model does not agree well with the data.
We further investigated the performance of the BIS, AAI, and Ce propofol indexes for three binary measures of anesthetic depth: conscious–unconscious as defined by the OAA/S score, presence–absence of eyelash reflex, and response–no response to noxious stimulus. For each of the three indexes and the three binary measures of depth, we computed values of normalized cumulative occurrence, values of sensitivity and specificity, and positive and negative predictive values versus index cutoff (threshold) value. For these calculations, we used “positive” to denote a test result that suggested consciousness or responsiveness and “negative” to denote a test result that suggested unconsciousness or nonresponsiveness. We assumed that increases in the BIS and AAI and a decrease in Ce propofol corresponded to an increased likelihood of consciousness or responsiveness. We computed the normalized cumulative occurrence of consciousness–responsiveness as the percentage of such occurrences with index values below the cutoff value for BIS and AAI and above the cutoff value for Ce propofol. Similarly, we computed the normalized cumulative occurrence of unconsciousness–nonresponsiveness as the percentage of such occurrences with index values above the cutoff value for BIS and AAI and below the cutoff value for Ce propofol. We computed sensitivity as the proportion of conscious–responsive patients with positive test results (index value higher than cutoff value for BIS and AAI and lower than cutoff value for Ce propofol). Similarly, we computed specificity as the proportion of unconscious–nonresponsive patients with negative test results (index value lower than cutoff value for BIS and AAI and higher than cutoff value for Ce propofol). We computed positive predictive value as the proportion of patients with positive test results that were correctly diagnosed as conscious or responsive. Similarly, we computed negative predictive value as the proportion of patients with negative test results that were correctly diagnosed as unconscious–nonresponsive.
Back to Top | Article Outline
Interference Analysis
We became concerned during the analysis of this study that the auditory input (“clicks”) from the A-Line® monitor might significantly alter BIS values because of the presence of the small evoked response in the electroencephalography. Therefore, an interference analysis study was performed. Fifteen female patients with the same inclusion criteria as the main study were included to receive three different concentrations of propofol (1.5–3–4.5 μg/ml) using an effect compartment controlled administration identical to the main study. Randomly in nine patients, both monitors were connected to the patient for 6 min, described as the “on” phase, whereafter the A-Line® “clicks” were disconnected for 2 min, described as the “off” phase. In six patients, the “off” period was maintained during the first 6 min, followed by a 2-min “on” period. In all patients, the sequence was repeated three times at the three different propofol target concentrations. The averaged BIS values (obtained using the area under the curve technique) between minutes 5 and 6 after the start of propofol administration were compared with the averaged BIS values between minutes 7 and 8, using a Wilcoxon signed rank test for two related samples.
Back to Top | Article Outline

Results

The demographics (mean ± SD) of the 20 female patients in the main study are as follows: age, 32 ± 5 yr; weight, 63 ± 6 kg; and height, 167 ± 10 cm.
Fig. 2
Fig. 2
Image Tools
Table 2
Table 2
Image Tools
Figure 2 shows the behavior of BIS, AAI, heart rate, and blood pressure at increasing propofol effect-site concentrations. A significant decrease in BIS and AAI was found with increasing propofol concentration. For heart rate, systolic blood pressure, and diastolic blood pressure, less significant changes were found. Considerably less scatter was observed in the BIS results than in the other variables. The Spearman rank-order correlation between the different variables and Ce propofol is shown in table 2. The best correlation was obtained for BIS, followed by AAI. For all hemodynamic variables, we observed a poor correlation with Ce propofol.
Fig. 3
Fig. 3
Image Tools
With increasing sedation (decrease in OAA/S score from level 5 to level 0), the median BIS decreased from 95 to 48, median AAI decreased from 70 to 19, and Ce propofol increased from 1.5 to 4 μg/ml (median), as shown in Figures 3A–C, respectively. In contrast (figs. 3D–F), only small, if any, changes were observed in heart rate (from 71 beats/min [median] at OAA/S level 5 to 69 beats/min at OAA/S level 0), systolic blood pressure (from 120 to 106 mmHg), and diastolic blood pressure (from 74 to 58 mmHg). For the mean arterial pressure, similar small changes were found (from 88 to 74 mmHg). The AAI (fig. 3B) reached its minimum early compared with the BIS (fig. 3A).
Fig. 4
Fig. 4
Image Tools
Fig. 5
Fig. 5
Image Tools
Table 3
Table 3
Image Tools
At the moment of loss of eyelash reflex (fig. 4), significant changes in median BIS (from 72 to 64), AAI (from 43 to 22), and Ce propofol (from 2.5 to 3 μg/ml) were found when comparing the values taken at the level just before loss of consciousness and just after loss of consciousness. No hemodynamic variables showed differences at loss of eyelash reflex. No indicators showed significant changes at the moment of loss of response to noxious stimulus (figure 5) when comparing the values taken at the last level before loss of response with the first level after loss of response. The ability of the indicators to predict the OAA/S score, loss of eyelash reflex, and loss of response to noxious stimulus as presented by the PK values is shown in table 3. In all tests, a similar performance was found for BIS, AAI, and Ce propofol. A much lower performance was observed for the hemodynamic indicators. The SE for the PKs of the OAA/S for BIS and AAI were 0.015 and 0.013, respectively. By calculating the t statistic, we found that this study including 20 patients had the power to determine significant differences between indicators of OAA/S score larger than 0.058, which is in accordance with our initial assumption that only difference larger than 0.05 would be considered significantly different.
Table 4
Table 4
Image Tools
Fig. 6
Fig. 6
Image Tools
Because the previous analysis revealed the best performance for BIS, AAI, and Ce propofol, further examination was warranted. By applying Probit analyses, the effective concentration or index at which 50% (ED50) and 95% (ED95) of the patients lost response to the OAA/S levels 5, 4, and 3 or eyelash reflex, were calculated (table 4). The complete probability curves for these observations are shown in figures 6A–C for Ce propofol, BIS, and AAI, respectively. For loss of response to noxious stimulus, the ED50 and ED95 are also shown in table 4, and the probability curves are plotted in figure 6 for Ce propofol, BIS, and AAI, respectively.
Fig. 7
Fig. 7
Image Tools
Fig. 8
Fig. 8
Image Tools
The normalized cumulative occurrence curves for these data are shown in figures 7A–C for BIS, figures 7D–F for AAI, and figures 8A–C for Ce propofol. The data in figures 7 and 8 are presented for the OAA/S levels (conscious vs. unconscious), (loss of) eyelash reflex, and (loss of) response to noxious stimulus. In all figures, no variable provided perfect sensitivity–specificity. Therefore, more in-depth sensitivity–specificity calculations were performed.
Table 5
Table 5
Image Tools
Table 6
Table 6
Image Tools
Table 7
Table 7
Image Tools
Tables 5–7 show the specific sensitivity and specificity valuesof different cutoff BIS, AAI, and Ce propofol levels toobserve loss of consciousness as described by OAA/S, loss of eyelash reflex, and loss of response to noxious stimulus. To be 100% certain of unconsciousness, a BIS value of just less than 55, an AAI of just less than 20, or a Ce propofol value just greater than 3.5 μg/ml was required. All patients were found to be conscious at a BIS value greater than 75, at an AAI value greater than 66, and at a Ce propofol value less than 2 μg/ml. For all indicators, some overlap between the curves was found.
Fig. 9
Fig. 9
Image Tools
After stimulus, the maximum mean increases in BIS and AAI until 1 min after stimulus were 8.2 (SD, 5.0) and 15.4 (SD, 11.1), respectively. The mean reaction times until maximum value were 39 s (SD, 12 s) and 20 s (SD, 15 s) (P < 0.05) for BIS and AAI, respectively. To illustrate this behavior, the time synchronized averages of the digitally recorded values are shown in figure 9.
Back to Top | Article Outline
Interference Analysis
Fig. 10
Fig. 10
Image Tools
The results for the on–off study at three different propofol steady state concentrations are shown in figure 10. No significant differences in BIS values between the “on” and “off” periods were found.
Back to Top | Article Outline

Discussion

The current study demonstrates that a stepwise increase in propofol effect-site concentration (Ce propofol) resulted in a monotonic decrease in BIS and AAI, which correlated well with the level of sedation and loss of consciousness as observed by the OAA/S score and loss of eyelash reflex. In contrast, the changes in hemodynamic measures in our study did not correlate well with changes in Ce propofol or in level of sedation of loss of consciousness. We selected the OAA/S score because it provides a good correlation with sedation and has been tested prospectively. 21 In addition, loss of eyelash reflex was used because it is a simple binary variable and is commonly applied by anesthesiologists in clinical practice to detect loss of consciousness.
Although both BIS and AAI indicators seemed to be clinically accurate, the Spearman correlation between BIS and Ce propofol was significantly better than the correlation between AAI and Ce propofol (table 2 and figure 2). This means that a better degree of monotonic relation was found between BIS and Ce propofol compared with AAI and Ce propofol. Recently, Iselin-Chaves et al.11 concluded that the Pearson correlation (measuring the degree of linear monotonic relation) between BIS and a measured steady state concentration of propofol (r = −0.8) was significantly better than the correlation between MLAEP latency variables, Pa and Nb latency, and propofol (rPa = 0.68 and rNb = 0.63). Bonhomme et al.12 found correlation coefficients similar to ours when comparing BIS with another AEP technique called steady state response. The differences in abilities of BIS and AAI to correlate with a range of propofol effect-site concentrations has to do with the fundamental difference in the signals that are being processed. Although the AAI is a linear mapping of the MLAEP peak amplitudes and latencies, it does not give a linear correlation to the Ce propofol, in contrast with BIS, which was developed using correlation between electroencephalography and drug concentrations. One might argue the appropriateness of attempting to develop an anesthetic depth indicator (e.g., cerebrally derived) by establishing a linear relation to anesthetic effect-site concentration. It is known that individuals vary in sensitivity to anesthetics and that anesthetic concentration is not a perfect predictor of an individual's anesthetic depth, especially if the interpretation of concentration value to predict depth is for a population of patients rather than one individual. 22 Therefore, an anesthetic depth indicator that is developed by crafting it to track concentration is inherently limited. A better strategy for developing an anesthetic depth indicator is to craft the indicator to track the patient's clinically measured anesthetic depth; therefore, we also studied the behavior of the different indicators in that way.
Bispectral Index, AAI, and Ce propofol changed significantly during the transition from a conscious to an unconscious state, as shown in figure 3 for the transition from OAA/S level 3 to level 2 and as shown in figure 4 for loss of eyelash reflex. This is in contrast to previous work from Gajraj et al.23,24 using a mathematically derived single numerical variable from the MLAEP, called the AEP index. During repeated transitions from awake to asleep and nonsteady conditions, they concluded that the AEP index was better able to detect the transition from unconsciousness to consciousness than was BIS (using an A-1000 monitor and software version 3.0). 4 For the hemodynamic data, no changes were observed at loss of consciousness. Once again, this suggests that hemodynamic data are not useful indicators for describing depth of sedation or loss of consciousness, as already stated by other investigators. 25
The correlations between the different indicators and the sedation score are important to observe in assessing their performance accuracy. As shown in figure 3, ordinal values obtained using a responsiveness rating scale such as the OAA/S score may not allow a perfect linear relation between the observed clinical state of the patient and the measured value of the indicator. To account for this, the prediction probability, PK, provides a better alternative to investigate the overall relative performance of the different indicators in describing a sedation level or loss of consciousness. 19,20,26 Table 3 shows that BIS, AAI, and Ce propofol comparably, and reasonably accurately, predicted the level of sedation or loss of consciousness as observed by the OAA/S score or the loss of eyelash reflex. The performance of the hemodynamic data was significantly worse in predicting the sedation level or loss of consciousness. These performance results indicate that both BIS and AAI are reliable indicators for assessing depth of sedation and loss of consciousness. At the level of significance used in our study, the cerebrally derived indicators, BIS and AAI, were found to be comparable in performance to estimated steady state propofol concentration, Ce propofol. Our findings agree with those previously found for propofol, 27 as well as the previously published observations between utility of BIS and measured sevoflurane or isoflurane end-tidal concentration. 21,26 This highly predictive accuracy of drug effect-site concentrations has only been established during steady state conditions and single-drug settings, as in this study. Additional research should be performed to study the performance of these indicators during multiple drug administration, as well as during non–steady state conditions.
Because BIS, AAI, and Ce propofol were the most accurate indicators that we studied, we examined these in greater depth. As shown in figure 6A and in table 4, higher propofol effect-site concentrations were required to cause loss of response at decreasing OAA/S levels until loss of consciousness. This was correlated with a decrease in BIS (fig. 6B) and AAI values (fig. 6C). The results for Ce propofol and BIS found in this study agree with those previously found by other investigators who used the same scoring systems. 21,26,28,29
The study was also aimed at observing the sensitivity–specificity characteristics for BIS, AAI, and Ce propofol in more detail. Recently, Drummond 30 expressed the opinion that a depth of anesthesia indicator should have, at a minimum, a 100% sensitivity (no false-negative results) if what the clinicians seek is a specific numeric threshold (“cutoff value”) that can be interpreted to mean “not aware.” Ideally, there should be a 100% sensitivity and specificity. Unfortunately, to the best of our knowledge there exists no system or monitor in the real world reaching this level.
In our study (figure 7), because the cumulative occurrence data derived from our population showed some overlap between “conscious” and “not conscious,” none of the three “best” indicators was found to be ideal. However, such monitors might still help provide in the “decision support” during anesthesia. The cutoff values with 100% sensitivity and their corresponding specificity found in this study are shown in tables 5–7.
The study also tested the performance of the indicators to predict movement as a reaction to noxious stimulus. The supramaximal tetanic stimulus used in this study was previously used by other investigators as a substitute for conventional forms of stimulation in humans. 27 As shown in figure 5, no indicator changed significantly when loss of response to noxious stimulus occurred. Other investigators have already observed that measures from the cerebral cortex such as electroencephalography and AEP are poor predictors of response to noxious stimulus. 31 Likewise, the hemodynamic values recorded in this study were also nonpredictive regarding loss of response to noxious stimulus. Because of the specific design of our protocol, we only observed static hemodynamic values recorded just before the stimulus and not changes in the hemodynamics after each noxious stimulus. Changes in hemodynamics caused by noxious stimulus might indicate stress response or arousal more accurately. Table 3 shows that the PK values, which indicate the ability of the variables to predict loss of response to the noxious stimulus, were not significantly better for one indicator over another because of the large SEM values. During propofol–alfentanil anesthesia, Doi et al.32 found a mean PK value of 0.54 (SE, 0.10) for BIS to predict movement at the insertion of a laryngeal mask. In contrast to our results, they found a significantly better prediction probability (PK = 0.87; SE = 0.073) for the AEP-derived variable, AEP index, to predict movement at laryngeal mask insertion. They concluded that the ability of the AEP to discriminate between movers and nonmovers in response to a noxious stimulus is caused by the fact that AEP reflects not only cortical but also subcortical brain activities. In contrast, our results describe no better performance of the AAI than BIS in predicting surgical immobility. No accurate threshold values could be defined for any indicator with acceptable specificity–sensitivity values (tables 5–7). With respect to movement in response to a noxious stimulus, Thornton and Sharpe 33 suggested that various end points such as loss of consciousness and loss of response to a noxious stimulus do not appear to be a part of a single continuum and can occur independently of one other. We suggest that the poor performance of the rostral central nervous system indicators tested here might support the hypothesis that movement response to a noxious stimulus occurs as a spinal reflex. 34 Only when the information can reach the cerebral cortex via afferent central nervous system pathways, changes might be observed in the cerebrally derived indicators (= arousal reaction). 35 This arousal reflex was clearly manifested by both indicators, BIS and AAI, as illustrated in figure 9. The reaction time for detecting arousal was significantly shorter with the AAI than BIS because of the shorter signal acquisition and processing time found with the A-Line® monitor compared with the BIS® monitor, as previously observed by other investigators. 9
A limitation of this study is the possible intraobserver bias because of the fact that the observer was not completely blinded to the indicator values when scoring the clinical measures. In addition, PK statistics assumed independent data. For the OAA/S score, the assessments were all collinear with depth. In the absence of a comparable statistical test to analyze these data, we have accepted, as have other investigators, 26 the potential bias introduced into our results.
For the interference analysis, the results for the on–off study at three different propofol steady state concentrations are shown in figure 10. No significant differences in BIS values between the “on” and “off” periods were found.
In conclusion, during propofol anesthesia with steady state conditions, we found that BIS, AAI, and Ce propofol were accurate indicators for the level of sedation and loss of consciousness. Hemodynamic variables were poor indicators of the hypnotic–anesthetic status of the patient. BIS correlated best with propofol effect-site concentration, followed by the AAI. Hemodynamic measurements did not correlate well. No indicators revealed any information concerning reaction to noxious stimulus. After stimulus, BIS and AAI showed an increase as a result of arousal. This reaction occurred more rapidly with the AAI than with BIS.
The authors thank Bob Butterfield, B.Sc. (Research Fellow, Alaris Medical Systems, Inc., San Diego, California) for help during the preparation of this manuscript.
Back to Top | Article Outline

FOOTNOTES

‡‡RUGLOOP, written by T. De Smet and M. Struys. More information is available at http://allserv.rug.ac.be/∼mstruys. Cited Here...
Back to Top | Article Outline

References

1. Heier T, Steen PA: Assessment of anaesthesia depth. Acta Anaesthesiol Scand 1996; 40: 1087–100

2. Sleigh JW, Donovan J: Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Br J Anaesth 1999; 82: 666–71

3. Bruhn J, Ropcke H, Hoeft A: Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. A nesthesiology 2000; 92: 715–26

4. Mantzaridis H, Kenny GN: Auditory evoked potential index: A quantitative measure of changes in auditory evoked potentials during general anaesthesia. Anaesthesia 1997; 52: 1030–6

5. Bartnik EA, Blinowska KJ, Durka PJ: Single evoked potential reconstruction by means of wavelet transform. Biol Cybern 1992; 67: 175–81

6. Eysholdt U, Schreiner C: Maximum length sequences: A fast method for measuring brain-stem–evoked responses. Audiology 1982; 21: 242–50

7. Haig AR, Gordon E, Rogers G, Anderson J: Classification of single-trial ERP sub-types: Application of globally optimal vector quantization using simulated annealing. Electroencephalogr Clin Neurophysiol 1995; 94: 288–97

8. Jensen EW, Nygaard M, Henneberg SW: On-line analysis of middle latency auditory evoked potentials (MLAEP) for monitoring depth of anaesthesia in laboratory rats. Med Eng Phys 1998; 20: 722–8

9. Urhonen E, Jensen EW, Lund J: Changes in rapidly extracted auditory evoked potentials during tracheal intubation. Acta Anaesthesiol Scand 2000; 44: 743–8

10. Dutton RC, Smith WD, Rampil IJ, Chortkoff BS, Eger EI 2nd: Forty-hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. A nesthesiology 1999; 91: 1209–20

11. Iselin-Chaves IA, El Moalem HE, Gan TJ, Ginsberg B, Glass PS: Changes in the auditory evoked potentials and the bispectral index following propofol or propofol and alfentanil. A nesthesiology 2000; 92: 1300–10

12. Bonhomme V, Plourde G, Meuret P, Fiset P, Backman SB: Auditory steady-state response and bispectral index for assessing level of consciousness during propofol sedation and hypnosis. Anesth Analg 2000; 91: 1398–403

13. Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, Schwam EM, Siegel JL: Validity and reliability of the Observer's Assessment of Alertness/Sedation Scale: Study with intravenous midazolam. J Clin Psychopharmacol 1990; 10: 244–51

14. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ: The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. A nesthesiology 1998; 88: 1170–82

15. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ: The influence of age on propofol pharmacodynamics. A nesthesiology 1999; 90: 1502–16

16. Shafer SL, Gregg KM: Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm 1992; 20: 147–69

17. Struys MM, De Smet T, Depoorter B, Versichelen LF, Mortier EP, Dumortier FJ, Shafer SL, Rolly G: Comparison of plasma compartment versus two methods for effect compartment-controlled target-controlled infusion for propofol. A nesthesiology 2000; 92: 399–406

18. Steiger J: Tests for comparing elements of a correlation matrix. Psych Bull 1980; 87: 245–51

19. Smith WD, Dutton RC, Smith NT: A measure of association for assessing prediction accuracy that is a generalization of non-parametric ROC area. Stat Med 1996; 15: 1199–215

20. Smith WD, Dutton RC, Smith NT: Measuring the performance of anesthetic depth indicators. A nesthesiology 1996; 84: 38–51

21. Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P: Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. A nesthesiology 1997; 86: 836–47

22. Danhof M: Does variability explain (all) variability in drug effects? Topics in Pharmaceutical Science. Edited by Breimer DD, Crommelin DJA, Midha KK. Noordwijk, Amsterdam Med. Press BV, 1989, pp 573–86

23. Gajraj RJ, Doi M, Mantzaridis H, Kenny GN: Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spectrum during repeated transitions from consciousness to unconsciousness. Br J Anaesth 1998; 80: 46–52

24. Gajraj RJ, Doi M, Mantzaridis H, Kenny GN: Comparison of bispectral EEG analysis and auditory evoked potentials for monitoring depth of anaesthesia during propofol anaesthesia. Br J Anaesth 1999; 82: 672–8

25. Shafer S, Hu C: Managing PK Variability in Anesthesia: Integrating the EEG, effect-site anesthesic concentrations and measures of anaesthetic depth, The Population Approach: Measuring and Managing Variability in Response, Concentration and Dose. Edited by Commision E. Brussels, European Commision, 1997, pp 83–94

26. Katoh T, Suzuki A, Ikeda K: Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane. A nesthesiology 1998; 88: 642–50

27. Leslie K, Sessler DI, Smith WD, Larson MD, Ozaki M, Blanchard D, Crankshaw DP: Prediction of movement during propofol/nitrous oxide anesthesia: Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. A nesthesiology 1996; 84: 52–63

28. Liu J, Singh H, White PF: Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg 1997; 84: 185–9

29. Iselin-Chaves IA, Flaishon R, Sebel PS, Howell S, Gan TJ, Sigl J, Ginsberg B, Glass PS: The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the Bispectral Index. Anesth Analg 1998; 87: 949–55

30. Drummond J: Monitoring depth of anesthesia. A nesthesiology 2000; 93: 876–82

31. Mi WD, Sakai T, Takahashi S, Matsuki A: Haemodynamic and electroencephalograph responses to intubation during induction with propofol or propofol/fentanyl. Can J Anaesth 1998; 45: 19–22

32. Doi M, Gajraj RJ, Mantzaridis H, Kenny GN: Prediction of movement at laryngeal mask airway insertion: Comparison of auditory evoked potential index, bispectral index, spectral edge frequency and median frequency. Br J Anaesth 1999; 82: 203–7

33. Thornton C, Sharpe RM: Evoked responses in anaesthesia. Br J Anaesth 1998; 81: 771–81

34. Rampil IJ, Mason P, Singh H: Anesthetic potency (MAC) is independent of forebrain structures in the rat. A nesthesiology 1993; 78: 707–12

35. Antognini JF, Wang XW: Isoflurane indirectly depresses middle latency auditory evoked potentials by action in the spinal cord in the goat. Can J Anaesth 1999; 46: 692–5

Cited By:

This article has been cited 135 time(s).

Experimental and Therapeutic Medicine
Prognostic evaluation of bispectral index in patients following cardiopulmonary resuscitation
Liu, H; Liu, Y; Xu, Y; Xue, Y
Experimental and Therapeutic Medicine, 5(3): 907-911.
10.3892/etm.2013.884
CrossRef
Pediatric Anesthesia
Evaluation of the aepEX (TM) TM monitor of hypnotic depth in pediatric patients receiving propofol-remifentanil anesthesia
Cheung, YM; Scoones, GP; Hoeks, SE; Stolker, RJ; Weber, F
Pediatric Anesthesia, 23(): 891-897.
10.1111/pan.12235
CrossRef
Swiss Medical Weekly
Effects of dexmedetomidine on performance of bispectral index as an indicator of loss of consciousness during propofol administration
Chen, Z; Shao, DH; Hang, LH
Swiss Medical Weekly, 143(): -.
ARTN w13762
CrossRef
Anesthesia and Analgesia
The impact of acoustic stimulation on the AEP monitor/2 derived composite auditory evoked potential index under awake and anesthetized conditions
Weber, F; Zimmermann, M; Bein, T
Anesthesia and Analgesia, 101(2): 435-439.
10.1213/01.ANE.0000158470.34024.EF
CrossRef
Anesthesia and Analgesia
Does cerebral monitoring improve ophthalmic surgical operating conditions during propofol-induced sedation?
Oei-Lim, VLB; Dijkgraaf, MGW; de Smet, MD; White, M; Kalkman, CJ
Anesthesia and Analgesia, 103(5): 1189-1195.
10.1213/01.ane.0000244321.38023.92
CrossRef
American Journal of Gastroenterology
Bispectral index monitoring of sedation during endoscopy: Buried alive?
von Delius, S; Schmid, RM; Huber, W
American Journal of Gastroenterology, 102(3): 686.

British Journal of Anaesthesia
Depth of anaesthesia monitoring: what's available, what's validated and what's next?
Bruhn, J; Myles, PS; Sneyd, R; Struys, MMRF
British Journal of Anaesthesia, 97(1): 85-94.
10.1093/bja/ael120
CrossRef
Neuroscience Letters
Time-frequency properties of electroencephalogram during induction of anesthesia
Kortelainen, J; Koskinen, M; Mustola, S; Seppanen, T
Neuroscience Letters, 446(): 70-74.
10.1016/j.neulet.2008.09.056
CrossRef
Anaesthesia
Responsiveness to stimuli of bispectral index, middle latency auditory evoked potentials and clinical scales in critically ill children
Lamas, A; Lopez-Herce, J; Sancho, L; Mencia, S; Carrillo, A; Santiago, MJ; Martinez, V
Anaesthesia, 63(): 1296-1301.
10.1111/j.1365-2044.2008.05654.x
CrossRef
Anesthesia and Analgesia
The effect of neuromuscular block and noxious stimulation on hypnosis monitoring during sevoflurane anesthesia
Ekman, A; Stalberg, E; Sundman, E; Eriksson, LI; Brudin, L; Sandin, R
Anesthesia and Analgesia, 105(3): 688-695.
10.1213/01.ane.0000278117.31134.34
CrossRef
1St International Ieee Embs Conference on Neural Engineering 2003, Conference Proceedings
An AEP/EEG hybrid index for monitoring the hypnotic depth during general anesthesia
Jensen, EW; Struys, MMRF; Vazquez, PM; Rodriguez, B; Litvan, H
1St International Ieee Embs Conference on Neural Engineering 2003, Conference Proceedings, (): 268-270.

British Journal of Anaesthesia
Skin conductance monitoring compared with Bispectral Index (R) to assess emergence from total i.v. anaesthesia using propofol and remifentanil
Ledowski, T; Bromilow, J; Paech, MJ; Storm, H; Hacking, R; Schug, SA
British Journal of Anaesthesia, 97(6): 817-821.
10.1093/bja/ael278
CrossRef
International Journal of Adaptive Control and Signal Processing
Progress of automatic drug delivery in anaesthesia-The 'Rostock assistant system for anaesthesia control (RAN)'
Simanski, O; Janda, M; Schubert, A; Bajorat, J; Hofmockel, R; Lampe, B
International Journal of Adaptive Control and Signal Processing, 23(5): 504-521.
10.1002/acs.1068
CrossRef
British Journal of Anaesthesia
Relationship between Bispectral Index, electroencephalographic state entropy and effect-site EC50 for propofol at different clinical endpoints
Iannuzzi, M; Iannuzzi, E; Rossi, F; Berrino, L; Chiefari, M
British Journal of Anaesthesia, 94(4): 492-495.
10.1093/bja/aei075
CrossRef
European Journal of Anaesthesiology
Impact of the Narcotrend Index on propofol consumption and emergence times during total intravenous anaesthesia with propofol and remifentanil in children: a clinical utility study
Weber, F; Pohl, F; Hollnberger, H; Taeger, K
European Journal of Anaesthesiology, 22(): 741-747.

Acta Anaesthesiologica Scandinavica
Impact of the AEP-Monitor/2-derived composite auditory-evoked potential index on propofol consumption and emergence times during total intravenous anaesthesia with propofol and remifentanil in children
Weber, F; Seidl, M; Bein, T
Acta Anaesthesiologica Scandinavica, 49(3): 277-283.
10.1111/j.1399-6576.2004.00626.x
CrossRef
Pediatric Anesthesia
Value of bispectral index monitor in differentiating between moderate and deep Ramsay Sedation Scores in children
Mason, KP; Michna, E; Zurakowski, D; Burrows, PE; Pirich, MA; Carrier, M; Fontaine, PJ; Sethna, NF
Pediatric Anesthesia, 16(): 1226-1231.
10.1111/j.1460-9592.2006.01975.x
CrossRef
Acta Anaesthesiologica Scandinavica
Can the Cerebral State Monitor replace the Bispectral Index in monitoring hypnotic effect during propofol/remifentanil anaesthesia?
Hoymork, SC; Hval, K; Jensen, EW; Raeder, J
Acta Anaesthesiologica Scandinavica, 51(2): 210-216.

2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-16
Depth of anesthesia index using cumulative power spectrum
Jospin, M; Caminal, P; Jensen, EW; Vallverdu, M; Struys, MMRF; Vereecke, HEM; Kaplan, DT
2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-16, (): 15-18.

British Journal of Anaesthesia
Spectral entropy measurement of patient responsiveness during propofol and remifentanil. A comparison with the bispectral index
Vanluchene, ALG; Struys, MMRF; Heyse, BEK; Mortier, EP
British Journal of Anaesthesia, 93(5): 645-654.
10.1093/bja/aeh251
CrossRef
Pediatric Anesthesia
Level of sedation evaluation with Cerebral State Index and A-Line Arx in children undergoing diagnostic procedures
Disma, N; Lauretta, D; Palermo, F; Sapienza, D; Ingelmo, PM; Astuto, M
Pediatric Anesthesia, 17(5): 445-451.
10.1111/j.1460-9592.2006.02146.x
CrossRef
Acta Anaesthesiologica Scandinavica
Comparison of BIS and AAI as measures of anaesthetic drug effect during desflurane-remifentanil anaesthesia
Kreuer, S; Bruhn, J; Larsen, R; Bauer, C; Wilhelm, W
Acta Anaesthesiologica Scandinavica, 48(9): 1168-1173.
10.1111/j.1399-6576.2004.00498.x
CrossRef
Acta Anaesthesiologica Scandinavica
Combined general-epidural anesthesia decreases the desflurane requirement for equivalent A-line ARX index in colorectal surgery
Lu, CH; Borel, CO; Wu, CT; Yeh, CC; Jao, SW; Chao, PC; Wong, CS
Acta Anaesthesiologica Scandinavica, 49(8): 1063-1067.
10.1111/j.1399-6576.2005.00726.x
CrossRef
British Journal of Anaesthesia
Comparison of Alaris AEP index and bispectral index during propofol-remifentanil anaesthesia
Kreuer, S; Bruhn, J; Larsen, R; Hoepstein, M; Wilhelm, W
British Journal of Anaesthesia, 91(3): 336-340.
10.1093/bja/aeg189
CrossRef
Anaesthesia
Entropy during propofol hypnosis, including an episode of wakefulness
Anderson, RE; Barr, G; Owall, A; Jakobsson, J
Anaesthesia, 59(1): 52-56.

Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie
Neuromonitoring for estimating the depth of narcosis
Schmidt, N; Bischoff, P
Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie, 39(1): 33-60.

Acta Anaesthesiologica Scandinavica
Pitfalls and challenges when assessing the depth of hypnosis during general anaesthesia by clinical signs and electronic indices
Jensen, EW; Litvan, H; Struys, M; Vazquez, PM
Acta Anaesthesiologica Scandinavica, 48(): 1260-1267.
10.1111/j.1399-6576.2004.00521.x
CrossRef
Acta Anaesthesiologica Scandinavica
Prospective evaluation of the time to peak effect of propofol to target the effect site in children
Munoz, HR; Leon, PJ; Fuentes, RS; Echevarria, GC; Cortinez, LI
Acta Anaesthesiologica Scandinavica, 53(7): 883-890.
10.1111/j.1399-6576.2009.01995.x
CrossRef
Anaesthesia
The AAI((TM)) index, the BIS index and end-tidal concentration during wash in and wash out of sevoflurane
Anderson, RE; Barr, G; Assareh, H; Jakobsson, J
Anaesthesia, 58(6): 531-535.

Anaesthesia
A comparison of bispectral index and ARX-derived auditory evoked potential index in measuring the clinical interaction between ketamine and propofol anaesthesia
Vereecke, HEM; Struys, MMRF; Mortier, EP
Anaesthesia, 58(): 957-961.

Anesthesia and Analgesia
The effect of cerebral monitoring on recovery after general anesthesia: A comparison of the auditory evoked potential and bispectral index devices with standard clinical practice
Recart, A; Gasanova, I; White, PF; Thomas, T; Ogunnaike, B; Hamza, M; Wang, A
Anesthesia and Analgesia, 97(6): 1667-1674.
10.1213/01.ANE.0000087041.63034.8C
CrossRef
Acta Anaesthesiologica Scandinavica
Efficacy of the A-line (TM) AEP monitor as a tool for predicting successful insertion of a laryngeal mask during sevoflurane anesthesia
Alpiger, S; Helbo-Hansen, HS; Vach, W; Ording, H
Acta Anaesthesiologica Scandinavica, 48(7): 888-893.
10.1111/j.1399-6576.2004.00425.x
CrossRef
Critical Care
Evaluating and monitoring analgesia and sedation in the intensive care unit
Sessler, CN; Grap, MJ; Ramsay, MAE
Critical Care, 12(): -.
ARTN S2
CrossRef
Anesthesia and Analgesia
Automated Responsiveness Monitor to Titrate Propofol Sedation
Doufas, AG; Morioka, N; Mahgoub, AN; Bjorksten, AR; Shafer, SL; Sessler, DI
Anesthesia and Analgesia, 109(3): 778-786.
10.1213/ane.0b013e3181b0fd0f
CrossRef
Anesthesia and Analgesia
Measuring depth of sedation with auditory evoked potentials during controlled infusion of propofol and remifentanil in healthy volunteers
Haenggi, M; Ypparila, H; Takala, J; Korhonen, I; Luginbuhl, M; Petersen-Felix, S; Jakob, SM
Anesthesia and Analgesia, 99(6): 1728-1736.
10.1213/01.ANE.0000135634.46493.0A
CrossRef
Anesthesia and Analgesia
The influence of the click stimulus of the Alaris AEP monitor on the depth of anesthesia
Kreuer, S; Wilhelm, W; Bruhn, J
Anesthesia and Analgesia, 97(2): 604.
10.1213/01.ANE.0000074640.51427.37
CrossRef
Minerva Anestesiologica
Relationship between A-line Autoregressive Index, Spectral Entropy and steady state predicted site-effect effective concentrations at 05-50-95 of propofol at different clinical endpoints
Iannuzzi, E; Iannuzzi, M; Mora, B; Sidro, L; Berrino, L; Chiefari, M; Tufano, R
Minerva Anestesiologica, 75(): 692-697.

International Journal of Adaptive Control and Signal Processing
Feedforward adaptive control of the Bispectral Index of the EEG using the intravenous anaesthetic drug propofol
Nunes, CS; Mendonca, T; Lemos, JM; Amorim, P
International Journal of Adaptive Control and Signal Processing, 23(5): 485-503.
10.1002/acs.1097
CrossRef
British Journal of Anaesthesia
Comparison of the nociceptive flexion reflex threshold and the bispectral index as monitors of movement responses to noxious stimuli under propofol mono-anaesthesia
von Dincklage, F; Send, K; Hackbarth, M; Rehberg, B; Baars, JH
British Journal of Anaesthesia, 102(2): 244-250.
10.1093/bja/aen351
CrossRef
Pediatric Anesthesia
Electroencephalographic Narcotrend Index monitoring during procedural sedation and analgesia in children
Weber, F; Hollnberger, H; Weber, J
Pediatric Anesthesia, 18(9): 823-830.
10.1111/j.1460-9592.2008.02692.x
CrossRef
Minerva Anestesiologica
BIS - AAI and clinical measures during propofol target controlled infusion with Schnider's pharmacokinetic model
Iannuzzi, E; Iannuzzi, M; Viola, G; Sidro, L; Cardinale, A; Chiefari, M
Minerva Anestesiologica, 73(): 23-31.

2007 Mediterranean Conference on Control & Automation, Vols 1-4
Automatic drug delivery in anesthesia: From the beginning until now
Simanski, O; Schubert, A; Kaehler, R; Janda, M; Bajorat, J; Hofmockel, R; Lampe, B
2007 Mediterranean Conference on Control & Automation, Vols 1-4, (): 223-228.

Clinical Pharmacology & Therapeutics
Simulated drug administration: An emerging tool for teaching clinical pharmacology during anesthesiology training
Struys, MMRF; De Smet, T; Mortier, EP
Clinical Pharmacology & Therapeutics, 84(1): 170-174.
10.1038/clpt.2008.76
CrossRef
Surgical Endoscopy and Other Interventional Techniques
Laparoscopy-assisted subtotal gastrectomy under thoracic epidural-general anesthesia leading to the effects on postoperative micturition
Lee, SJ; Hyung, WJ; Koo, BN; Lee, JY; Jun, NH; Kim, SC; Kim, JW; Liu, J; Kim, KJ
Surgical Endoscopy and Other Interventional Techniques, 22(3): 724-730.
10.1007/s00464-007-9475-6
CrossRef
British Journal of Anaesthesia
Combined use of Bispectral Index (TM) and A-Line (TM) Autoregressive Index (TM) to assess anti-nociceptive component of balanced anaesthesia during lumbar arthrodesis
Bonhomme, V; Llabres, V; Dewandre, PY; Brichant, JF; Hans, P
British Journal of Anaesthesia, 96(3): 353-360.
10.1093/bja/ael004
CrossRef
British Journal of Anaesthesia
Comparative evaluation of the cerebral state index and the bispectral index during target-controlled infusion of propofol
Zhong, T; Guo, QL; Pang, YD; Peng, LF; Li, CL
British Journal of Anaesthesia, 95(6): 798-802.
10.1093/bja/aei253
CrossRef
Veterinary Journal
Effects of sedative and hypnotic drug combinations on transcranial magnetic motor evoked potential, bispectral index and ARX-derived auditory evoked potential index in dogs
Van Soens, I; Struys, MM; Polis, IE; Tshamala, M; Nollet, H; Bhatti, SF; Van Ham, LM
Veterinary Journal, 181(2): 163-170.
10.1016/j.tvjl.2008.02.014
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Neuromuscular block with vecuronium reduces the rapidly extracted auditory evoked potentials index during steady state anesthesia
Ge, SJ; Zhuang, XL; He, RH; Wang, YT; Zhang, X; Huang, SW
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 50(): 1017-1022.

Lancet
Anaesthesia: the patient's point of view
Royston, D; Cox, F
Lancet, 362(): 1648-1658.

Anales De Pediatria
The assessment of sedation in the critically ill child on mechanical ventilation during tracheal suction
Cidoncha, E; Mencia, S; Riano, B; Urbano, J; Lopez-Herce, J; Carrillo, A
Anales De Pediatria, 70(3): 218-222.
10.1016/j.anpedi.2008.10.011
CrossRef
American Journal of Gastroenterology
Auditory Evoked Potentials Compared With Bispectral Index for Monitoring of Midazolam and Propofol Sedation During Colonoscopy
von Delius, S; Thies, P; Rieder, T; Wagenpfeil, S; Herberich, E; Karagianni, A; Frimberger, E; Meining, A; Ludwig, L; Ebert, MPA; Schulte-Frohlinde, E; Neu, B; Prinz, C; Schmid, RM; Huber, W
American Journal of Gastroenterology, 104(2): 318-325.
10.1038/ajg.2008.73
CrossRef
Neuroscience
Halothane augments event-related gamma oscillations in rat visual cortex
Imas, OA; Ropella, KM; Wood, JD; Hudetz, AG
Neuroscience, 123(1): 269-278.
10.1016/j.neuroscience.2003.09.014
CrossRef
British Journal of Anaesthesia
Awareness detected by auditory evoked potential monitoring
Trillo-Urrutia, L; Fernandez-Galinski, S; Castano-Santa, J
British Journal of Anaesthesia, 91(2): 290-292.
10.1093/bja/aeg144
CrossRef
Anaesthesist
Narcotrend stages and end-tidal desflurane concentrations. An investigation during recovery from desflurane/remifentanil anaesthesia
Kreuer, S; Molter, G; Biedler, A; Larsen, R; Schoth, S; Wilhelm, W
Anaesthesist, 51(): 800-804.
10.1007/s00101-002-0371-0
CrossRef
Anaesthesia
SNAP index and Bispectral index during different states of propofol/remifentanil anaesthesia
Schmidt, GN; Bischoff, P; Standl, T; Lankenau, G; Hellstern, A; Hipp, C; Schulte am Esch, J
Anaesthesia, 60(3): 228-234.

Anesthesia and Analgesia
A-line, bispectral index, and estimated effect-site concentrations: A prediction of clinical end-points of anesthesia
Kreuer, S; Bruhn, J; Larsen, R; Buchinger, H; Wilhelm, W
Anesthesia and Analgesia, 102(4): 1141-1146.
10.1213/01.ane.0000202385.96653.32
CrossRef
Anesthesia and Analgesia
The relationship between bispectral index and propofol during target-controlled infusion anesthesia: A comparative study between children and young adults
Rigouzzo, A; Girault, L; Louvet, N; Servin, F; De-Smet, T; Piat, V; Seeman, R; Murat, I; Constant, I
Anesthesia and Analgesia, 106(4): 1109-1116.
10.1213/ane.0b013e318164f388
CrossRef
Chinese Medical Journal
Relationship between depth of anesthesia and effect-site concentration of propofol during induction with the target-controlled infusion technique in elderly patients
Liu, SH; Wei, W; Ding, GN; Ke, JD; Hong, FX; Tian, M
Chinese Medical Journal, 122(8): 935-940.
10.3760/cma.j.issn.0366-6999.2009.08.011
CrossRef
Anasthesiologie & Intensivmedizin
Acoustically evoked potentials: Principles, index computation and clinical experiences
Bischoff, P; Schmidt, GN
Anasthesiologie & Intensivmedizin, 44(1): 27-30.

Anesthesia and Analgesia
ARX-derived auditory evoked potential index and bispectral index during the induction of anesthesia with propofol and remifentanil
Schmidt, GN; Bischoff, P; Standl, T; Issleib, M; Voigt, M; Schulte, J
Anesthesia and Analgesia, 97(1): 139-144.
10.1213/01.ANE.0000065546.78919.82
CrossRef
Acta Anaesthesiologica Scandinavica
Automated responsiveness test and bispectral index monitoring during propofol and propofol/N2O sedation
Doufas, AG; Bakhshandeh, M; Haugh, GS; Bjorksten, AR; Greif, R; Sessler, DI
Acta Anaesthesiologica Scandinavica, 47(8): 951-957.

Anesthesia and Analgesia
Human auditory steady-state responses: The effects of recording technique and state of arousal
Picton, TW; John, MS; Purcell, DW; Plourde, G
Anesthesia and Analgesia, 97(5): 1396-1402.
10.1213/01.ANE.0000082994.22466.DD
CrossRef
British Journal of Anaesthesia
Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent
Anderson, RE; Jakobsson, JG
British Journal of Anaesthesia, 92(2): 167-170.
10.1093/bja/aeh036
CrossRef
British Journal of Anaesthesia
Entropy indices vs the bispectral index (TM) for estimating nociception during sevoflurane anaesthesia
Takamatsu, I; Ozaki, M; Kazama, T
British Journal of Anaesthesia, 96(5): 620-626.
10.1093/bja/ael050
CrossRef
Anesthesia and Analgesia
A comparison of bispectral index and rapidly extracted auditory evoked potentials index responses to noxious stimulation during sevoflurane anesthesia
Ekman, A; Brudin, L; Sandin, R
Anesthesia and Analgesia, 99(4): 1141-1146.
10.1213/01.ANE.0000130618.99860.48
CrossRef
British Journal of Anaesthesia
Skin conductance monitoring compared with bispectral index (R) monitoring to assess emergence from general anaesthesia using sevoflurane and remifentanil
Ledowski, T; Paech, MJ; Storm, H; Jones, R; Schug, SA
British Journal of Anaesthesia, 97(2): 187-191.
10.1093/bja/ae1119
CrossRef
Pediatric Anesthesia
AEP-monitor/2 derived, composite auditory evoked potential index (AAI-1.6) and bispectral index as predictors of sevoflurane concentration in children
Ironfield, CM; Davidson, AJ
Pediatric Anesthesia, 17(5): 452-459.
10.1111/j.1460-9592.2006.02155.x
CrossRef
British Journal of Anaesthesia
Changes in a surgical stress index in response to standardized pain stimuli during propofol-remifentanil infusion
Struys, MMRF; Vanpeteghem, C; Huiku, M; Uutela, K; Blyaert, NBK; Mortier, EP
British Journal of Anaesthesia, 99(3): 359-367.
10.1093/bja/aem173
CrossRef
Pakistan Journal of Medical Sciences
Comparative evaluation of the cerebral state index (TM) and bispectral index (TM) monitoring during propofol-remifentanil anesthesia for open heart surgery
Shahbazi, S; Zand, F; Saem, J
Pakistan Journal of Medical Sciences, 23(4): 505-509.

Acta Anaesthesiologica Scandinavica
Surgical stress index as a measure of nociception/antinociception balance during general anesthesia
Wennervirta, J; Hynynen, M; Koivusalo, AM; Uutela, K; Huiku, M; Vakkuri, A
Acta Anaesthesiologica Scandinavica, 52(8): 1038-1045.
10.1111/j.1399-6576.2008.01687.x
CrossRef
British Journal of Anaesthesia
Correlation of the A-Line (TM) ARX index with acoustically evoked potential amplitude
Wenningmann, I; Paprotny, S; Strassmann, S; Ellerkmann, RK; Rehberg, B; Soehle, M; Urban, BW
British Journal of Anaesthesia, 97(5): 666-675.
10.1093/bja/ael223
CrossRef
Anaesthesist
Measurement of the depth of anaesthesia
Schmidt, GN; Muller, J; Bischoff, P
Anaesthesist, 57(1): 9-+.
10.1007/s00101-007-1294-6
CrossRef
Veterinary Anaesthesia and Analgesia
The bispectral index during recovery from halothane and sevoflurane anaesthesia in horses
Beldao, E; Blissitt, KJ; Duncan, JC; Laredo, FG; de Montes, MEG; Clutton, RE
Veterinary Anaesthesia and Analgesia, 37(1): 25-34.
10.1111/j.1467-2995.2009.00507.x
CrossRef
Acta Anaesthesiologica Scandinavica
Skin conductance or entropy for detection of non-noxious stimulation during different clinical levels of sedation
Gjerstad, AC; Storm, H; Hagen, R; Huiku, M; Qvigstad, E; Raeder, J
Acta Anaesthesiologica Scandinavica, 51(1): 1-7.
10.1111/j.1399-6576.2006.01188.x
CrossRef
Acta Anaesthesiologica Scandinavica
Comparison of skin conductance with entropy during intubation, tetanic stimulation and emergence from general anaesthesia
Gjerstad, AC; Storm, H; Hagen, R; Huiku, M; Qvigstad, E; Raeder, J
Acta Anaesthesiologica Scandinavica, 51(1): 8-15.
10.1111/j.1399-6576.2006.01189.x
CrossRef
Anesthesia and Analgesia
A Comparison in Adolescents of Composite Auditory Evoked Potential Index and Bispectral Index During Propofol-Remifentanil Anesthesia for Scollosis Surgery with Intraoperative Wake-Up Test
van Oud-Alblas, HJB; Peters, JWB; de Leeuw, TG; Vermeylen, KTA; de Klerk, LWL; Tibboel, D; Klein, J; Weber, F
Anesthesia and Analgesia, 107(5): 1683-1688.
10.1213/ane.0b013e3181852d94
CrossRef
British Journal of Anaesthesia
Relationship between bispectral index, electroencephalographic state entropy and effect-site EC50 for propofol at different clinical endpoints
Iannuzzi, M; Iannuzzi, E; Rossi, F; Berrino, L; Chiefari, M
British Journal of Anaesthesia, 94(5): 613-616.
10.1093/bja/aei097
CrossRef
British Journal of Anaesthesia
The suppression of spinal F-waves by propofol does not predict immobility to painful stimuli in humans
Baars, JH; Tas, S; Herold, KF; Hadzidiakos, DA; Rehberg, B
British Journal of Anaesthesia, 96(1): 118-126.
10.1093/bja/aei283
CrossRef
British Journal of Anaesthesia
Dexmedetomidine infusion as a supplement to isoflurane anaesthesia for vitreoretinal surgery
Lee, YYS; Wong, SM; Hung, CT
British Journal of Anaesthesia, 98(4): 477-483.
10.1093/bja/aem040
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Atenolol may not modify anesthetic depth indicators in elderly patients - a second look at the data
Zaugg, M; Tagliente, T; Silverstein, JH; Lucchinetti, E
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 50(7): 638-642.

Annales Francaises D Anesthesie Et De Reanimation
Evaluation of the depth of sedation in neurocritical care: clinical scales, electrophysiological methods and BIS
Mantz, J
Annales Francaises D Anesthesie Et De Reanimation, 23(5): 535-540.
10.1016/j.annfar.2004.03.003
CrossRef
British Journal of Anaesthesia
Efficacy of A-line (TM) AEP Monitor as a tool for predicting acceptable tracheal intubation conditions during sevoflurane anaesthesia
Alpiger, S; Helbo-Hansen, HS; Vach, W; Ording, H
British Journal of Anaesthesia, 94(5): 601-606.
10.1093/bja/aei111
CrossRef
Acta Anaesthesiologica Scandinavica
Changes in the auditory evoked potentials index by induction doses of four different intravenous anesthetics
Nishiyama, T
Acta Anaesthesiologica Scandinavica, 49(9): 1326-1329.
10.1111/j.1399-6576.2005.00820.x
CrossRef
Chinese Medical Journal
Can bispectral index or auditory evoked potential index predict implicit memory during propofol-induced sedation?
Wang, Y; Yue, Y; Sun, YH; Wu, AS
Chinese Medical Journal, 119(): 894-898.

Acta Anaesthesiologica Scandinavica
Effect site concentrations of propofol producing hypnosis in children and adults: comparison using the bispectral index
Munoz, HR; Cortinez, LI; Ibacache, ME; Leon, PJ
Acta Anaesthesiologica Scandinavica, 50(7): 882-887.
10.1111/j.1399-6576.2006.01062.x
CrossRef
Anesthesia and Analgesia
Bispectral index and middle latency auditory evoked potentials in children younger than two-years-old
Lamas, A; Lopez-Herce, J; Sancho, L; Mencia, S; Carrillo, A; Santiago, MJ; Martinez, V
Anesthesia and Analgesia, 106(2): 426-432.
10.1213/ane.0b013e3181602be1
CrossRef
Anaesthesia
Cp50 of propofol for laryngeal mask airway insertion using predicted concentrations with and without nitrous oxide
Kodaka, M; Handa, F; Kawasaki, J; Miyao, H
Anaesthesia, 57(): 956-959.

Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Propofol ensures a more stable A-line ARX index than thiopental during intubation
Hsu, JC; Yang, CY; See, LC; Liou, JT; Liu, FC; Hwang, JJ; Wu, WC; Lui, PW
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 52(7): 692-696.

Neuroscience Letters
Isoflurane disrupts anterio-posterior phase synchronization of flash-induced field potentials in the rat
Imas, OA; Ropella, KM; Wood, JD; Hudetz, AG
Neuroscience Letters, 402(3): 216-221.
10.1016/j.neulet.2006.04.003
CrossRef
Anesthesia and Analgesia
Performance of the cerebral state index during increasing levels of propofol anesthesia: A comparison with the bispectral index
Cortinez, LI; Delfino, AE; Fuentes, R; Munoz, HR
Anesthesia and Analgesia, 104(3): 605-610.
10.1213/01.ane.0000255152.96354.17
CrossRef
Acta Anaesthesiologica Scandinavica
Performance of the rapidly extracted auditory evoked potentials index to detect the recovery and loss of wakefulness in anesthetized and paralyzed patients
Ge, SJ; Zhuang, XL; Wang, YT; Wang, ZD; Chen, SL; Li, HT
Acta Anaesthesiologica Scandinavica, 47(4): 466-471.

Acta Anaesthesiologica Scandinavica
Palmar skin conductance compared to a developed stress score and to noxious and awakening stimuli on patients in anaesthesia
Storm, H; Shafiei, M; Myre, K; Raeder, J
Acta Anaesthesiologica Scandinavica, 49(6): 798-803.
10.1111/j.1399-6576.2005.00665.x
CrossRef
Anesthesia and Analgesia
Alaris AEP (TM) monitor's "click detection" does not help to detect inadvertent disconnection of headphones during anesthesia
Schmidt, GN; Bischoff, P; Standl, T; Gerhardt, A; Lankenau, G; Esch, JSA
Anesthesia and Analgesia, 98(1): 123-127.
10.1213/01.ANE.0000093230.15342.9C
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Dexmedetomidine in combination with morphine PCA provides superior analgesia for shockwave lithotripsy
Alhashemi, JA; Kaki, AM
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 51(4): 342-347.

Acta Anaesthesiologica Scandinavica
Is the ARX index a more sensitive indicator of anesthetic depth than the bispectral index during sevoflurane/nitrous oxide anesthesia?
Nishiyama, T; Matsukawa, T; Hanaoka, K
Acta Anaesthesiologica Scandinavica, 48(8): 1028-1032.
10.1111/j.1399-6576.2004.00468.x
CrossRef
Acta Anaesthesiologica Scandinavica
Cerebral state index during anaesthetic induction: a comparative study with propofol or nitrous oxide
Anderson, RE; Barr, G; Jakobsson, JG
Acta Anaesthesiologica Scandinavica, 49(6): 750-753.
10.1111/j.1399-6576.2005.00737.x
CrossRef
Pediatric Anesthesia
The correlation of the Narcotrend Index with endtidal sevoflurane concentrations and hemodynamic parameters in children
Weber, F; Hollnberger, H; Gruber, M; Frank, B; Taeger, K
Pediatric Anesthesia, 15(9): 727-732.
10.1111/j.1460-9592.2004.01546.x
CrossRef
Veterinary Journal
Prediction of motor responses to surgical stimuli during bilateral orchiectomy of pigs using nociceptive flexion reflexes and the bispectral index derived from the electroencephalogram
Baars, JH; Rintisch, U; Rehberg, B; Lahrmann, KH; von Dincklage, F
Veterinary Journal, 195(3): 377-381.
10.1016/j.tvjl.2012.07.011
CrossRef
Seminars in Respiratory and Critical Care Medicine
Evaluating and Monitoring Sedation, Arousal, and Agitation in the ICU
Sessler, CN; Riker, RR; Ramsay, MA
Seminars in Respiratory and Critical Care Medicine, 34(2): 169-178.
10.1055/s-0033-1342971
CrossRef
2012 25Th International Symposium on Computer-Based Medical Systems (Cbms)
Contributions to a Decision Support System Based on Depth of Anesthesia Signals
Sebastiao, R; Silva, MM; Gama, J; Mendonca, T
2012 25Th International Symposium on Computer-Based Medical Systems (Cbms), (): -.

Anesthesiology
Noxious Stimulation Response Index: A Novel Anesthetic State Index Based on Hypnotic–Opioid Interaction
Luginbühl, M; Schumacher, PM; Vuilleumier, P; Vereecke, H; Heyse, B; Bouillon, TW; Struys, MM
Anesthesiology, 112(4): 872-880.
10.1097/ALN.0b013e3181d40368
PDF (632) | CrossRef
Anesthesiology
Comparison of Bispectral Index and Composite Auditory Evoked Potential Index for Monitoring Depth of Hypnosis in Children
Weber, F; van Oud-Alblas, HJ; Peters, JW; de Leeuw, TG; Tibboel, D; Klein, J
Anesthesiology, 108(5): 851-857.
10.1097/ALN.0b013e31816bbd6e
PDF (418) | CrossRef
Anesthesiology
The Entwined Mysteries of Anesthesia and Consciousness: Is There a Common Underlying Mechanism?
Hameroff, SR
Anesthesiology, 105(2): 400-412.

PDF (1026)
Anesthesiology
Early Phase Pharmacokinetics but Not Pharmacodynamics Are Influenced by Propofol Infusion Rate
Masui, K; Kira, M; Kazama, T; Hagihira, S; Mortier, EP; Struys, MM
Anesthesiology, 111(4): 805-817.
10.1097/ALN.0b013e3181b799c1
PDF (1607) | CrossRef
Anesthesiology
New Composite Index Based on Midlatency Auditory Evoked Potential and Electroencephalographic Parameters to Optimize Correlation with Propofol Effect Site Concentration: Comparison with Bispectral Index and Solitary Used Fast Extracting Auditory Evoked Potential Index
Vereecke, HE; Vasquez, PM; Jensen, EW; Thas, O; Vandenbroecke, R; Mortier, EP; Struys, MM
Anesthesiology, 103(3): 500-507.

PDF (974)
Anesthesiology
Ability of the Bispectral Index, Autoregressive Modelling with Exogenous Input-derived Auditory Evoked Potentials, and Predicted Propofol Concentrations to Measure Patient Responsiveness during Anesthesia with Propofol and Remifentanil
Struys, MM; Vereecke, H; Moerman, A; Jensen, EW; Verhaeghen, D; De Neve, N; Dumortier, FJ; Mortier, EP
Anesthesiology, 99(4): 802-812.

PDF (498)
Anesthesiology
Identification of Sensory Blockade by Somatosensory and Pain-induced Evoked Potentials
Schmidt, GN; Scharein, E; Siegel, M; Müller, J; Debener, S; Nitzschke, R; Engel, A; Bischoff, P
Anesthesiology, 106(4): 707-714.
10.1097/01.anes.0000264774.09910.c6
PDF (851) | CrossRef
Anesthesiology
Subhypnotic Doses of Isoflurane Impair Auditory Discrimination in Rats
Burlingame, RH; Shrestha, S; Rummel, MR; Banks, MI
Anesthesiology, 106(4): 754-762.
10.1097/01.anes.0000264755.24264.68
PDF (988) | CrossRef
Anesthesiology
Effect of Auditory Evoked Potential Index Monitoring on Anesthetic Drug Requirements and Recovery Profile after Laparoscopic Surgery: A Clinical Utility Study
Jones, SB; Recart, A; White, PF; Wang, A; Gasanova, I; Byerly, S
Anesthesiology, 99(4): 813-818.

PDF (213)
Anesthesiology
Does the Use of Electroencephalographic Bispectral Index or Auditory Evoked Potential Index Monitoring Facilitate Recovery after Desflurane Anesthesia in the Ambulatory Setting?
White, PF; Ma, H; Tang, J; Wender, RH; Sloninsky, A; Kariger, R
Anesthesiology, 100(4): 811-817.

PDF (285)
Anesthesiology
Spectral Entropy as an Electroencephalographic Measure of Anesthetic Drug Effect: A Comparison with Bispectral Index and Processed Midlatency Auditory Evoked Response
Vanluchene, AL; Vereecke, H; Thas, O; Mortier, EP; Shafer, SL; Struys, MM
Anesthesiology, 101(1): 34-42.

PDF (424)
Anesthesiology
Closed-loop Control of Mean Arterial Blood Pressure during Surgery with Alfentanil: Clinical Evaluation of a Novel Model-based Predictive Controller
Luginbühl, M; Bieniok, C; Leibundgut, D; Wymann, R; Gentilini, A; Schnider, TW
Anesthesiology, 105(3): 462-470.

PDF (1104)
Anesthesiology
Evaluation of the Alaris Auditory Evoked Potential Index as an Indicator of Anesthetic Depth in Preschool Children during Induction of Anesthesia with Sevoflurane and Remifentanil
Weber, F; Bein, T; Hobbhahn, J; Taeger, K
Anesthesiology, 101(2): 294-298.

PDF (281)
Anesthesiology
AQUAVAN(R) Injection, a Water-soluble Prodrug of Propofol, as a Bolus Injection: A Phase I Dose-escalation Comparison with DIPRIVAN(R) (Part 2): Pharmacodynamics and Safety: Retracted
Struys, MM; Vanluchene, AL; Gibiansky, E; Gibiansky, L; Vornov, J; Mortier, EP; Van Bortel, L
Anesthesiology, 103(4): 730-743.

PDF (2611)
Anesthesiology
Narcotrend® and Bispectral Index® Monitor Are Superior to Classic Electroencephalographic Parameters for the Assessment of Anesthetic States during Propofol-Remifentanil Anesthesia
Schulte Esch, J; Schmidt, GN; Bischoff, P; Standl, T; Jensen, K; Voigt, M
Anesthesiology, 99(5): 1072-1077.

PDF (452)
Anesthesiology
Pharmacodynamic Interaction between Propofol and Remifentanil Regarding Hypnosis, Tolerance of Laryngoscopy, Bispectral Index, and Electroencephalographic Approximate Entropy
Bouillon, TW; Bruhn, J; Radulescu, L; Andresen, C; Shafer, TJ; Cohane, C; Shafer, SL
Anesthesiology, 100(6): 1353-1372.

PDF (3318)
Anesthesiology
Cholinergic Reversal of Isoflurane Anesthesia in Rats as Measured by Cross-approximate Entropy of the Electroencephalogram
Hudetz, AG; Wood, JD; Kampine, JP
Anesthesiology, 99(5): 1125-1131.

PDF (747)
Anesthesiology
Comparative Evaluation of the Datex-Ohmeda S/5 Entropy Module and the Bispectral Index® Monitor during Propofol–Remifentanil Anesthesia
Schmidt, GN; Bischoff, P; Standl, T; Hellstern, A; Teuber, O; Schulte Esch, J
Anesthesiology, 101(6): 1283-1290.

PDF (885)
Anesthesiology
When Is a Bispectral Index of 60 Too Low?: Rational Processed Electroencephalographic Targets Are Dependent on the Sedative–Opioid Ratio
Manyam, SC; Gupta, DK; Johnson, KB; White, JL; Pace, NL; Westenskow, DR; Egan, TD
Anesthesiology, 106(3): 472-483.

PDF (1101)
Anesthesiology
Comparison between Bispectral Index and Patient State Index as Measures of the Electroencephalographic Effects of Sevoflurane
Soehle, M; Ellerkmann, RK; Grube, M; Kuech, M; Wirz, S; Hoeft, A; Bruhn, J
Anesthesiology, 109(5): 799-805.
10.1097/ALN.0b013e3181895fd0
PDF (650) | CrossRef
Anesthesiology
Remifentanil Modifies the Relation of Electroencephalographic Spectral Changes and Clinical Endpoints in Propofol Anesthesia
Kortelainen, J; Koskinen, M; Mustola, S; Seppänen, T
Anesthesiology, 109(2): 198-205.
10.1097/ALN.0b013e31817f5bfc
PDF (598) | CrossRef
Anesthesiology
Depth of Anesthesia Monitors: Status Quo
Litvan, H; Paniagua, P
Anesthesiology, 98(3): 793-794.

Anesthesiology
Depth of Anesthesia Monitors: Status Quo: In Reply:—
Kalkman, CJ; Drummond, JC
Anesthesiology, 98(3): 794-795.

Anesthesiology
Volatile Anesthetics Enhance Flash-induced γ Oscillations in Rat Visual Cortex
Imas, OA; Ropella, KM; Ward, BD; Wood, JD; Hudetz, AG
Anesthesiology, 102(5): 937-947.

PDF (1450)
Anesthesiology
Can Bispectral Index Monitoring Predict Recovery of Consciousness in Patients with Severe Brain Injury?
Fàbregas, N; Gambús, PL; Valero, R; Carrero, EJ; Salvador, L; Zavala, E; Ferrer, E
Anesthesiology, 101(1): 43-51.

PDF (316)
Anesthesiology
Cerebral State Index during Propofol Anesthesia: A Comparison with the Bispectral Index and the A-Line ARX Index
Jensen, EW; Litvan, H; Revuelta, M; Rodriguez, BE; Caminal, P; Martinez, P; Vereecke, H; Struys, MM
Anesthesiology, 105(1): 28-36.

PDF (1347)
Anesthesiology
The Anesthetic Cascade: A Theory of How Anesthesia Suppresses Consciousness
John, ER; Prichep, LS
Anesthesiology, 102(2): 447-471.

PDF (3449)
Anesthesiology
Depth of Anesthesia Monitors: Status Quo: In Reply:—
Struys, MM; Mortier, EP
Anesthesiology, 98(3): 795.

European Journal of Anaesthesiology (EJA)
Monitoring depth of anaesthesia: is it worth the effort?
Bonhomme, V; Hans, P
European Journal of Anaesthesiology (EJA), 21(6): 423-428.

PDF (972)
European Journal of Anaesthesiology (EJA)
Performance of AEP Monitor/2‐derived composite index as an indicator for depth of sedation with midazolam and alfentanil during gastrointestinal endoscopy
Huang, Y; Chu, Y; Chang, K; Wang, Y; Chan, K; Tsou, M
European Journal of Anaesthesiology (EJA), 24(3): 252&hyhen;257.
10.1017/S0265021506001633
PDF (120) | CrossRef
European Journal of Anaesthesiology (EJA)
Is naso‐gastric tube insertion necessary to reduce the risk of gastric injury at subcostal laparoscopic insufflation? A pilot study
Brandner, B; Krishnan, P; Sitham, M; Man, A; Saridogan, E; Cutner, A
European Journal of Anaesthesiology (EJA), 24(7): 644&hyhen;645.
10.1017/S0265021507000403
PDF (42) | CrossRef
European Journal of Anaesthesiology (EJA)
Inter‐patient variability upon induction with sevoflurane estimated by the time to reach predefined end‐points of depth of anaesthesia
Lambert, P; Junke, E; Fuchs-Buder, T; Meistelman, C; Longrois, D
European Journal of Anaesthesiology (EJA), 23(4): 311-318.
10.1017/S0265021506000123
PDF (142) | CrossRef
British Journal of Clinical Pharmacology
Electro-encephalographic surrogate measures fail to describe the pharmacodynamic interaction between ketamine and propofol
Struys, MMRF; Vereecke, HEM; Mortier, EP
British Journal of Clinical Pharmacology, 57(3): 366.

European Journal of Anaesthesiology
Performance of bispectral index and auditory evoked potential monitors in detecting loss of consciousness during anaesthetic induction with propofol with and without fentanyl
Mi, WD; Sakai, T; Kudo, T; Kudo, M; Matsuki, A
European Journal of Anaesthesiology, 21(): 807-811.

Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie
SNAP-index and Bispectral index during induction of anaesthesia propofol and remifentanil
Schmidt, GN; Standl, T; Lankenau, G; Hellstern, A; Hipp, C; Bischoff, P
Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie, 39(5): 286-291.
10.1055/s-2004-814559
CrossRef
Back to Top | Article Outline

Supplemental Digital Content

Back to Top | Article Outline

© 2002 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.
Login

Article Tools

Images

Share