Skip Navigation LinksHome > February 2001 - Volume 94 - Issue 2 > Volume of Air in a Lethal Venous Air Embolism
Case Reports

Volume of Air in a Lethal Venous Air Embolism

Toung, Thomas J. K. M.D.*; Rossberg, Mark I. M.D.†; Hutchins, Grover M. M.D.‡

Free Access
Article Outline
Collapse Box

Author Information

THE morbidity and mortality rates from venous air embolism is determined by the volume of air entrained, the rate of entrainment, and the position and the cardiac status of the patient. As early as 1809, Nysten 1 estimated the lethal dose of air to be 40–50 ml in a small dog and 100–120 ml in a large dog. The exact amount, 7.5 ml/kg, however, was not determined in dogs until 1953 by Oppenheimer et al.2 In l963, Munson et al.3 demonstrated a lethal volume of only 0.55 ml/kg in rabbits. The lethal volume of air in an adult human is unknown but is estimated to range from 200 to 300 ml. These numbers are derived from the cases of fatalities reported by Martland, 4 Yeakel, 5 and Flanagan. 6 We report herein a case of
Back to Top | Article Outline

Case Report

A 71-yr-old, 68 kg, 173-cm man was admitted to the hospital because of congestive heart failure. Treatment included administration of diuretics and digitalis. Physical examination showed that the patient had cardiomegaly, hepatomegaly, ascites, and pitting edema. A chest radiograph confirmed marked cardiomegaly and a heart scan showed pericardial effusion. In the radiology suite, the patient was placed in a semi-Fowler position. Standard monitoring of electrocardiography (ECG) and blood pressure was used. A subxyphoid pericardiocentesis was performed using a No. 14 Jelco intracath, yielding 175 ml serosanguinous fluid with a specific gravity of 1.015, an erythrocyte count of 74,000/mm3, and 145 leukocytes/mm3. Results of the culture and cytology studies of the fluid were negative. Five days later, repeat chest radiography showed reaccumulation of pericardial fluid. Repeat pericardiocentesis was attempted and abandoned after the withdrawal of 75 ml bloody fluid. Pericardiocentesis was performed again 5 days later. Four hundred sixty milliliters of bloody fluid was removed and 250–300 ml air were injected through the catheter for pneumopericardiography. A week later, repeat pericardiocentesis was performed in the radiology suite. Bloody fluid, 450 ml, was aspirated without difficulty. For pneumopericardiography, 200 ml air was injected over 3–5 s through the catheter without difficulty. However, almost immediately, the patient became restless, apneic, and opisthotonic. ECG showed marked depression of ST segments with varying degrees of atrioventricular block. The procedure was discontinued. The patient was intubated and external cardiac massage was started. Resuscitation was unsuccessful and the patient died.
Autopsy was performed 3 h after death. There were no postmortem changes in organs or tissue. Because of the possibility of air embolism, water was placed between the skin flap and chest wall in the axillary region. No air escaped from either the right or the left pleura cavity. The pericardial cavity contained no air. There were 800 ml blood and several large blood clots in the pericardial cavity. Extensive fibrinous adhesions existed between the pericardium and the epicardium. The right ventricle was distended with air. There were two fresh and three healing 1-mm slits grouped in a 1-cm radius in the serosal surface of the anterior myocardium of the right ventricle corresponding to the slit in the pericardium. The pericardial cavity was filled with water. When a hole was made in the anterior aspect of the pulmonary artery 1 cm above the pulmonary valve, air bubbles escaped. Both the right and the left ventricles were moderately enlarged because of hypertrophy. The foramen ovale was probe patent but was closed with a flap-like septum primum. Tricuspid valves were normal. No air was present on the left side of heart or the coronary arteries. Further dissection of the fixed gross specimen showed again needle-sized perforations on the external and internal surfaces of the right ventricle. There was a sinus tract through the myocardium, connecting the two perforations. Both lungs were emphysematous. No other specific lesions were recognized. The other organs, including the brain, were grossly and microscopically normal.
Back to Top | Article Outline


The minimum volume of air lethal to human beings has not been established. Martland 4 reported two fatal cases of venous air embolism that occurred during vaginal powder insufflation treatment for trichomonas infections. The total volume of air was estimated to be approximately 300 ml because six compressions of the insufflator bulb, the same number of compressions of the bulb used in the treatments, displaced 300 ml water. In the reported cases, both veins of the broad ligaments, the inferior vena cava, and the right side of the heart were distended and contained numerous air bubbles. Yeakel 5 reported a case of lethal air embolism that occurred during blood transfusion via a pressurized, plastic, blood container. The exact amount of entrapped air in the bag that was forced into the patient’s vein is unknown, but was estimated to be approximately 200 ml, based on retrospective experiments. Flannagan et al.6 reported a case of lethal complication of air embolism as a result of subclavian venipuncture. During Intracath insertion through a 14-gauge needle while the patient was in the semi-Fowler position, a rush of air was heard at the needle and the patient died within 5 min. To duplicate the clinical situation, the authors conducted an animal experiment. Based on their experiment, they found the volume flow rate of air able to be passed through a 14-gauge needle to be approximately 100 ml/s. Because it took only 1 to 2 s for insertion of the Intracath after the removal of the syringe from the needle, they estimated the volume of air to be approximately 200 ml. Thus, all previous case reports are conjecture or attempts at an estimate of the volume of air that was introduced intravenously. In these reported cases, air entered through peripheral veins. Air bubbles were noted along the venous channels leading to the right side of the heart. The exact amount of air that caused the patient’s death is probably less than the estimated amount.
The case presented herein is unique in that a known volume of air was introduced directly into the right ventricle, resulting in the death of the patient. Because no air was found in the pericardial cavity, one can assume that all air must have been injected directly into the right ventricle. Microscopically, no air bubbles were seen in the pulmonary vascular beds, coronary arteries, or cerebral arteries to indicate paradoxical air embolization. Only the right ventricle and pulmonary artery were distended and contained air bubbles. The proximate cause of death for this patient, therefore, is most likely a result of acute right ventricular outflow tract obstruction.
An important question relates to the effects of the patient’s cardiac disease on the volume of air necessary to be considered lethal. Overdistension of the right ventricle and obstruction to pulmonary blood flow are the primary pathophysiologic causes of death as a result of venous air embolism. It is possible that any impaired cardiac contractility in this patient may have decreased the volume of air necessary to produce cardiac arrest. Therefore, the lethal volume of air may be greater in adults with normal cardiac function.
In summary, estimates of 200–300 ml air have been reported to be lethal. This is the first report in an adult human to document an exact lethal volume of air, 200 ml (albeit in a patient with congestive heart failure), rather than to estimate retrospectively the lethal volume after the incident of fatal venous air embolism. It is still unclear whether this amount, 200 ml, represents the minimum volume of air considered to be lethal to healthy adult humans.
Back to Top | Article Outline


1. Green JS: On the air in the veins as a cause of death. Am J Med Sci 1864; 24: 38–65

2. Oppenheimer MJ, Durant TM, Lynch P: Body position related to venous air embolism and associated cardiovascular-respiratory changes. 1953; 225: 362–73

3. Munson ES, Merrick HC: Effect of nitrous oxide on venous air embolism. A nesthesiology 1966; 27: 783–7

4. Martland HS: Air embolism: fatal air embolism due to powder insufflators used in gynecological treatments. Am J Surg 1945; 68: 164–9

5. Yeakel AE: Lethal air embolism from plastic blood-storage container. JAMA 1968; 204: 267–9

6. Flanagan JP, Gradisar IA, Gross RJ, Kelly TR: Air embolus: A lethal complication of subclavian venipuncture. N Engl J Med 1969; 281: 488–9

Cited By:

This article has been cited 27 time(s).

Forensic Science International
Massive gas embolism revealed by two consecutive postmortem computed-tomography examinations
Makino, Y; Shimofusa, R; Hayakawa, M; Yajima, D; Inokuchi, G; Motomura, A; Iwase, H
Forensic Science International, 231(): E4-E10.
European Heart Journal
Guidelines on the diagnosis and management of acute pulmonary embolism - The task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC)
Torbicki, A; Perrier, A; Konstantinides, S; Agnelli, G; Galie, N; Pruszczyk, P; Bengel, F; Brady, AJB; Ferreira, D; Janssens, U; Klepetko, W; Mayer, E; Remy-Jardin, M; Bassand, JP; Vahanian, A; Camm, J; De Caterina, R; Dean, V; Dickstein, K; Filippatos, G; Funck-Brentano, C; Hellemans, I; Kristensen, SD; McGregor, K; Sechtem, U; Silber, S; Tendera, M; Widimsky, P; Zamorano, JL; Zamorano, JL; Andreotti, F; Ascherman, M; Athanassopoulos, G; De Sutter, J; Fitzmaurice, D; Forster, T; Heras, M; Jondeau, G; Kjeldsen, K; Knuuti, J; Lang, I; Lenzen, M; Lopez-Sendon, J; Nihoyannopoulos, P; Isla, LP; Schwehr, U; Torraca, L; Vachiery, JL
European Heart Journal, 29(): 2276-2315.
Annales Francaises D Anesthesie Et De Reanimation
Fatal air embolism during open eye surgery
Dermigny, F; Daelman, F; Guinot, PG; Hubert, V; Jezraoui, P; Thomas, F; Milazzo, S; Dupont, H
Annales Francaises D Anesthesie Et De Reanimation, 27(): 840-842.
Anesthesia and Analgesia
A novel ambulatory intravenous holder: Preliminary findings
Panni, MK; Fernandes, M; Mohdazhar, N; Taylor, T; Tomasi, A; Corn, SB
Anesthesia and Analgesia, 95(3): 635-638.
Kardiologia Polska
Guidelines for the diagnosis and to deal with acute pulmonary embolism
Torbicki, A; Perrier, A; Konstantinides, S; Agnelli, G; Galic, N; Pruszczyk, P; Bengel, F; Brady, AJB; Ferreira, D; Janssens, U; Klepetko, W; Mayer, E; Remy-Jardin, M; Bassand, JP
Kardiologia Polska, 67(1): S1-S51.

Risk of air embolism from prefilled syringes
Marsh, M
Anaesthesia, 62(9): 973.

Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Possible venous air embolism during open eye surgery in a child
Ruest, P; Aroichane, M; Cordahi, G; Bureau, N
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 54(): 840-844.

Anesthesia and Analgesia
Fatal gas embolism during transurethral incision of the bladder neck under spinal anesthesia
Tsou, MY; Teng, YH; Chow, LH; Ho, CM; Tsai, SK
Anesthesia and Analgesia, 97(6): 1833-1834.
Minimally Invasive Therapy & Allied Technologies
Fatal gas embolism during ureteroscopic holmium: yttrium-aluminium-garnet laser lithotripsy under spinal anesthesia - a case report
Chang, CP; Liou, CC; Yang, YL; Sun, MS
Minimally Invasive Therapy & Allied Technologies, 17(4): 259-261.
Anesthesia and Analgesia
A laboratory evaluation of the Level 1 rapid infuser (H1025) and the Belmont Instrument Fluid Management System (FMS 2000) for rapid transfusion
Comunale, ME
Anesthesia and Analgesia, 97(4): 1064-1069.

Minimally Invasive Therapy & Allied Technologies
Venous air embolism during laparoscopic cholecystectomy
Abut, YC; Eryilmaz, R; Okan, I; Erkalp, K
Minimally Invasive Therapy & Allied Technologies, 18(6): 366-368.
Journal of the Formosan Medical Association
Fatal massive hemorrhage caused by nasogastric tube misplacement in a patient with mediastinitis
Wu, PY; Kang, TJ; Hui, CK; Hung, MH; Sun, WZ; Chan, WH
Journal of the Formosan Medical Association, 105(1): 80-85.

Revue De Chirurgie Orthopedique Et Reparatrice De L Appareil Moteur
Can iatrogenic air embolism related to intraoperative use of hydrogen peroxide be easily avoided?
Guitard, PG; Delmon, P; Acra, M; Lechevallier, J; Dureuil, B
Revue De Chirurgie Orthopedique Et Reparatrice De L Appareil Moteur, 93(6): 603-606.

Journal of Vascular and Interventional Radiology
Aerostasis during central venous access: Updates in protective sheaths
Kolbeck, KJ; Stavropoulos, SW; Trerotola, SO
Journal of Vascular and Interventional Radiology, 17(7): 1155-1163.
Qjm-An International Journal of Medicine
Near-fatal pulmonary air embolus from iatrogenic injection of air during contrast administration
Athar, MK; Islam, T; Grammes, J; Athar, MN
Qjm-An International Journal of Medicine, 98(3): 231-232.
Anesthesia and Analgesia
Venous air embolism during transurethral resection of the prostate
Frasco, PE; Caswell, RE; Novicki, D
Anesthesia and Analgesia, 99(6): 1864-1866.
New Zealand Veterinary Journal
Suspected fatal venous air embolism during anaesthesia in a Pomeranian dog with pulmonary calcification
Walsh, VP; Machon, RG; Munday, JS; Broome, CJ
New Zealand Veterinary Journal, 53(5): 359-362.

Journal of Cardiothoracic and Vascular Anesthesia
Air embolism during sigmoidoscopy confirmed by transesophageal echocardiography
Mittnacht, AJC; Sampson, I; Bauer, J; Reich, DL
Journal of Cardiothoracic and Vascular Anesthesia, 20(3): 387-389.
Journal of Applied Physiology
Microvascular gas embolization clearance following perfluorocarbon administration
Eckmann, DM; Lomivorotov, VN
Journal of Applied Physiology, 94(3): 860-868.
Internal Medicine Journal
Air embolism in the right ventricle
Yusuf, SW; Troung, MT; Lenihan, DJ
Internal Medicine Journal, 37(9): 660-661.

Anaesthesia and Intensive Care
Suspected case of venous air embolism in an infant undergoing hip arthrogram
Sarantopoulos, S; Lew, J
Anaesthesia and Intensive Care, 32(3): 423-425.

Journal of Veterinary Emergency and Critical Care
Full recovery after cardiac arrest secondary to accidental iatrogenic venous air embolism in a cat
Pacifico, N; Weishaar, KM; Boozer, LB; Nakamura, RK
Journal of Veterinary Emergency and Critical Care, 20(2): 264-267.
The air elimination capabilities of pressure infusion devices and fluid-warmers
Schnoor, J; Macko, S; Weber, I; Rossaint, R
Anaesthesia, 59(8): 817-821.

Journal of Vascular and Interventional Radiology
Measurement of air emboli during central venous access: Do "protective" sheaths or insertion techniques matter?
Kolbeck, KJ; Itkin, M; Stavropoulos, W; Trerotola, SO
Journal of Vascular and Interventional Radiology, 16(1): 89-99.
Diagnosis and Treatment of Vascular Air Embolism
Mirski, MA; Lele, AV; Fitzsimmons, L; Toung, TJ
Anesthesiology, 106(1): 164-177.

PDF (773)
Lethal Air Embolism during Cesarean Delivery for Placenta Previa
Kostash, MA; Mensink, F
Anesthesiology, 96(3): 753-754.

Journal of Trauma and Acute Care Surgery
The Differences Between Venous Air Embolism and Fat Embolism in Routine Intraoperative Monitoring Methods, Transesophageal Echocardiography, and Fatal Volume in Pigs
Wang, A; Zhou, M; Jiang, W; Zhang, W
Journal of Trauma and Acute Care Surgery, 65(2): 416-423.
PDF (972) | CrossRef
Back to Top | Article Outline

© 2001 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.

Article Tools