Skip Navigation LinksHome > October 1999 - Volume 91 - Issue 4 > Comparable Postoperative Pulmonary Atelectasis in Patients G...
Anesthesiology:
Clinical Investigations

Comparable Postoperative Pulmonary Atelectasis in Patients Given 30% or 80% Oxygen during and 2 Hours after Colon Resection

Akça, Ozan M.D.*; Podolsky, Andrea M.D.†; Eisenhuber, Edith M.D.‡; Panzer, Oliver M.D.*; Hetz, Hubert M.D.§; Lampl, Karl M.D.§; Lackner, Franz X. M.D.∥; Wittmann, Karin M.D.#; Grabenwoeger, Florian M.D.**; Kurz, Andrea M.D.††; Schultz, Anette‐Marie M.D.§; Negishi, Chiharu M.D.‡‡; Sessler, Daniel I. M.D.§§

Free Access
Article Outline
Collapse Box

Author Information

Collapse Box

Abstract

Background: High concentrations of inspired oxygen are associated with pulmonary atelectasis but also provide recognized advantages. Consequently, the appropriate inspired oxygen concentration for general surgical use remains controversial. The authors tested the hypothesis that atelectasis and pulmonary dysfunction on the first postoperative day are comparable in patients given 30% or 80% perioperative oxygen.
Methods: Thirty patients aged 18–65 yr were anesthetized with isoflurane and randomly assigned to 30% or 80% oxygen during and for 2 h after colon resection. Chest radiographs and pulmonary function tests (forced vital capacity and forced expiratory volume) were obtained preoperatively and on the first postoperative day. Arterial blood gas measurements were obtained intraoperatively, after 2 h of recovery, and on the first postoperative day. Computed tomography scans of the chest were also obtained on the first postoperative day.
Results: Postoperative pulmonary mechanical function was significantly reduced compared with preoperative values, but there was no difference between the groups at either time. Arterial gas partial pressures and the alveolar–arterial oxygen difference were also comparable in the two groups. All preoperative chest radiographs were normal. Postoperative radiographs showed atelectasis in 36% of the patients in the 30%‐oxygen group and in 44% of those in the 80%‐oxygen group. Relatively small amounts of pulmonary atelectasis (expressed as a percentage of total lung volume) were observed on the computed tomography scans, and the percentages (mean ± SD) did not differ significantly in the patients given 30% oxygen (2.5% ± 3.2%) or 80% oxygen (3.0% ± 1.8%). These data provided a 99% chance of detecting a 2% difference in atelectasis volume at an α level of 0.05.
Conclusions: Lung volumes, the incidence and severity of atelectasis, and alveolar gas exchange were comparable in patients given 30% and 80% perioperative oxygen. The authors conclude that administration of 80% oxygen in the perioperative period does not worsen lung function. Therefore, patients who may benefit from generous oxygen partial pressures should not be denied supplemental perioperative oxygen for fear of causing atelectasis.
THE major complication associated with brief periods of oxygen administration is pulmonary atelectasis. Concern about atelectasis is appropriate because it occurs in up to 85% of patients undergoing lower abdominal surgery and is thought to be an important cause of morbidity. 1–3 Two mechanisms contribute to perioperative atelectasis: compression and absorption. Compression results from cephalad displacement of diaphragm, decreased compliance, and reduced functional residual capacity. 4–6 To some extent, these factors are present with any anesthetic technique. In contrast, absorption is defined by uptake of oxygen from isolated alveoli and results from administration of high oxygen partial pressures. Administration of 100% oxygen, even for a few minutes, causes significant postoperative atelectasis via this mechanism. 2,7,8
There is little doubt that high intraoperative oxygen concentrations produce atelectasis, at least in the immediate postoperative period. 7–10 However, the extent to which this atelectasis impairs pulmonary function and gas exchange remains controversial. 2,7–12 An additional complication associated with postoperative atelectasis is fever, which often prompts diagnostic evaluation or therapeutic intervention for potential infectious causes.
Intraoperative ventilation with high partial pressures of oxygen provides clinicians additional time to diagnose and treat inadvertent extubation, laryngospasm, and breathing‐circuit disconnections. 13,14 Oxygen per se also seems to be antiemetic, 15 which is of substantial clinical importance because uncontrollable nausea and vomiting remains the leading cause of unanticipated hospital admission after planned ambulatory surgery. 16,17
Even patients with normal arterial oxygen saturation may experience regions of inadequate tissue perfusion as result of extreme positioning, surgical retractors, and operative disruption of blood vessels. 18–20 High arterial oxygen partial pressures help limit hypoxia in these marginally perfused tissues. High inspired oxygen concentrations may similarly help oxygenate penumbra tissues surrounding the core of a stroke. 21,22
Inspired oxygen concentration is a major determinant of tissue oxygen tension, 23 which, in turn, is highly correlated with oxidative killing of bacteria by neutrophils over the range of observed values. 24 Oxidative killing is the major defense against surgical wound infection. 25 Therefore, it is not surprising that tissue oxygen tension is highly correlated with the risk of surgical wound infection. 26 Collagen deposition and scar formation are also directly dependent on tissue oxygen tension. 27–29 These data suggest that perioperative administration of high inspired oxygen concentrations may facilitate wound healing and improve resistance to surgical wound infections.
Available data thus indicate that high concentrations of inspired oxygen are associated with atelectasis but also provide recognized advantages. Consequently, the appropriate inspired oxygen concentration for general surgical use remains controversial. Concern about atelectasis prompts many clinicians to forego the benefits of generous inspired oxygen concentrations. Accordingly, we tested the hypothesis that atelectasis and pulmonary dysfunction on the first postoperative day are comparable in patients given 30% or 80% inspired oxygen during and for 2 h after colon resection.
Back to Top | Article Outline

Methods

The sample size for this study was based on atelectasis rates cited in previous studies. 1,11 These data suggested that a power of 95% for detecting a 50% difference in atelectasis at an α level of 0.05 would be obtained with 13 patients in each group. With approval of the ethics committee of the University of Vienna, we studied 30 patients aged 18–65 yr who were scheduled to undergo elective colon resection. These patients were among the 500 who participated in the multicenter Study of Oxygen and Surgical Wound Infection. The procedure was identical for all patients. However, the special tests described in the Atelectasis section were performed only in the selected 30 patients.
Written informed consent was obtained from each patient. Patients with a history or current symptoms of acute or chronic pulmonary disease and patients in whom surgeons planned delayed primary closure techniques or wound healing by secondary intention were excluded, as were patients who had a history of fever or infection.
Back to Top | Article Outline
Protocol
Anesthesia was induced at an inspired oxygen fraction of 100% with sodium thiopental (3–5 mg/kg), vecuronium (0.1 mg/kg), and fentanyl (1–3 μg/kg). Anesthesia subsequently was maintained with isoflurane (approximately 0.9%) in a carrier gas, described below in randomization groups. After tracheal intubation, the lungs were ventilated with a tidal volume of 10 ml/kg, with the rate adjusted to maintain end‐tidal carbon dioxide partial pressure near 35 mmHg. Ventilation was volume‐controlled with zero end‐expiratory pressure.
After induction of anesthesia, patients were assigned to two groups using a reproducible set of computer‐generated random numbers. The assignments were kept in sealed, sequentially numbered envelopes until used. For auditing purposes, both the assignment and the envelope number were recorded. The groups were: (1) 30% oxygen, balance nitrogen (not nitrous oxide); and (2) 80% oxygen, balance nitrogen.
At the end of surgery, residual neuromuscular block was antagonized with glycopyrrolate (0.4 mg) and neostigmine (2.5 mg). All patients were transported to the recovery unit after endotracheal extubation. During the first 2 h of recovery, the designated oxygen concentration was given via a nonrebreathing mask system (AirCare mask and manifold; Apotheus Laboratories, Inc., Lubbock, TX). Subsequently, all patients breathed room air. Supplemental oxygen was given to patients in either group at any time, as necessary, to maintain oxygen saturation as measured by pulse oximeter > 92%. Postoperative analgesia was provided by patient‐controlled intravenous doses of the opioid piritramid.
Back to Top | Article Outline
General Measurements
Appropriate morphometric characteristics of each treatment group were tabulated. Historical factors that might influence general health status of the participating patients were recorded. These parameters included smoking history, coexisting systemic diseases, alcohol abuse, and medication use.
An arterial blood gas measurement was obtained 1 h after induction of anesthesia and after 2 h of recovery at the randomly assigned fraction of inspired oxygen. The oxygen saturation from a pulse oximeter, end‐tidal carbon dioxide partial pressure, end‐tidal isoflurane concentration, and mean arterial blood pressure were measured at 15‐min intervals during anesthesia. Saturation and blood pressure were recorded at 30‐min intervals throughout recovery.
Posterior–anterior and lateral chest radiographs were obtained preoperatively per clinical routine. Additional posterior–anterior and lateral chest radiographs were obtained with patients in a semirecumbent position on the first postoperative day. All postoperative measurements were performed before patients were mobilized and before they first received chest physical therapy. The anesthesiologist and investigator assigned to perioperative management were aware of the group assignment. However, patients, nurses, surgeons, and other investigators were blinded to the group assignments. To maintain blinding, the perioperative blood gas results were not recorded on the postanesthesia care notes or elsewhere in patient records. The amount of postoperative oxygen administered was similarly omitted from the patients’ charts.
On the first postoperative day (approximately 24 h after surgery), a careful physical examination of the chest was performed to evaluate patients for respiratory complications, including pneumonia, pneumothorax, and clinical respiratory difficulties. Complications were scored with a three‐point subjective scale: slight, moderate, or severe. Postoperative pain was evaluated with a 100‐mm‐long visual analog scale (0 mm = no pain and 100 mm = the worst imaginable pain).
Back to Top | Article Outline
Atelectasis
Spirometry was performed in with patients in the sitting position preoperatively and on the first postoperative day to determine lung volumes and flow‐resistive properties of the lung. Spirometric measurements included the forced vital capacity and the forced expiratory volume in the first second. On the first postoperative day, arterial blood was sampled while the patients breathed room air. The radial artery was punctured with a 26‐gauge needle attached to a capillary system (AVL Micro Sampler, Schaffhausen, Switzerland), and gas partial pressures were analyzed within 2 min of collection (ABL 510; Radiometer, Copenhagen, Denmark).
Chest radiographs were specifically evaluated for atelectasis with Joyce et al. modification of Wilcox severity scoring: 30 0 = no atelectasis; 1 = plate atelectasis; 2 = segmental atelectasis; 3 = partial lobar atelectasis; 4 = complete lobar atelectasis; and 5 = complete lobar atelectasis in addition to any of the above.
Computed tomography (CT) scans of the chest were also obtained on the first postoperative day, approximately 24 h after surgery. CT scanning (Somatom Plus; Siemens, Erlangen, Germany) was performed with patients in the supine position with their arms positioned above the head. A frontal scout view covering the chest was obtained at the end of expiration. Subsequently, CT scans were obtained at the end of expiration: (1) 2 cm above the right costophrenic angle; (2) at the tracheal bifurcation; and (3) at two levels spaced equidistant between the first two scans. The scan time was 1 s at 165 mA and 137 kV. The slice thickness was 8 mm, and a matrix of 512 × 512 was used, resulting in a pixel (picture element) of approximately 1.5 × 1.5 mm. Lung density was defined in terms of Hounsfield units. 12 We considered the densities between −100 and +100 Hounsfield units as nonaerated (atelectasis) and the densities between −500 and −100 as poorly aerated areas. 31,32
All pulmonary function tests were performed by pulmonologists blinded to treatment group. Both sets of radiographs and the postoperative CT scans were evaluated by radiologists who were blinded to treatment group and to results of the pulmonary function tests.
Back to Top | Article Outline
Data Analysis
Each CT scan was separately examined for atelectasis. The dorsal border of atelectasis was manually highlighted. The ventral border between atelectasis and normal lung tissue was evaluated with Region of Interest software (Pulmo‐software; Siemens). The exact amount of atelectasis was then calculated as sum of all pixels (picture elements) having a density between −100 and +100 Hounsfield units. Absolute lung area was calculated for each scan as atelectatic and aerated areas; these areas were averaged across the four scans. The extent of atelectasis was expressed in squared centimeters as a percentage of the total lung area.
The overall incidence of atelectasis in the two groups was compared with a chi‐square analysis, whereas the percentage of atelectasis was evaluated with a Wilcoxon test. Pain scores were first averaged across the recovery period in each patient, and then among all patients. All clinical data, including physical examination scoring, arterial oxygen pressures, alveolar–arterial oxygen difference [(Aa)DO2], and pulse oximeter oxygen saturation were compared with unpaired two‐tailed Student t tests. Time‐dependent intragroup differences were evaluated by two‐tailed paired Student t tests. Results are presented as means ± SDs. A P value of 0.05 was considered statistically significant.
Back to Top | Article Outline

Results

Table 1
Table 1
Image Tools
Morphometric and demographic characteristics of the patients in each group were similar. There were four smokers among the patients given 30% oxygen and two among the patients given 80% oxygen (table 1). Preoperative pulmonary functions were comparable in the two groups, as were intraoperative hemodynamic responses and anesthetic management. The ratio of forced expiratory volume in the first second to forced vital capacity exceeded 70% in all but four patients.
During the recovery period, hemodynamic responses and the amount of piritramid given were similar in each group. Postoperative pain scores in the two groups did not differ significantly. Arterial oxygen partial pressure 1 h after induction of anesthesia and after 2 h of recovery differed significantly in the two groups, as might be expected from their differing inspired oxygen concentrations.
Three patients given 30% perioperative oxygen and five patients given 80% experienced slight respiratory difficulties or coughing on the first postoperative morning. Postoperative forced vital capacity and forced expiratory volume in the first second were significantly less than preoperative values, but there was no difference between the groups at either time. Arterial gas partial pressures and (Aa)DO2 were also comparable in the two groups.
Atelectasis was not identified on any preoperative chest radiographs, whereas it was observed in 36% (5 of 14) of the patients in the 30%‐oxygen group and 44% (7 of 16) of the patients in the 80%‐oxygen group (P = not significant). Plate‐like atelectasis was observed by chest radiograph in three patients in the 30%‐oxygen group and seven in the 80%‐oxygen group. Only two patients had segmental or partial lobar collapse, and both were in the 30%‐oxygen group. The mean values of chest radiograph severity scores were similar in the two groups (P = 0.62).
Table 2
Table 2
Image Tools
Fig. 1
Fig. 1
Image Tools
Fig. 2
Fig. 2
Image Tools
Fig. 3
Fig. 3
Image Tools
Figure 3
Figure 3
Image Tools
Fig. 4
Fig. 4
Image Tools
Relatively small amounts of pulmonary atelectasis were observed on the CT scans, and the percentages did not differ significantly in the patients given 30% oxygen (2.5% ± 3.2%) or 80% oxygen (3.0% ± 1.8%). These data provided a 99% chance of detecting a 2% difference in atelectasis volume at an α level of 0.05 (table 2). Poorly aerated regions were also comparable between the groups (9.5% ± 4.4% in the 30%‐oxygen group vs. 10.3% ± 4.2% in the 80%‐oxygen group). There was a poor correlation between arterial partial pressure of oxygen (in millimeters mercury) on the first postoperative morning and the amount of atelectasis (%) detected by CT scanning: −3.0(atelectasis) + 84; r2 = 0.42 (fig. 1). There was a poor correlation between (Aa)DO2 (in millimeters mercury) on the first postoperative morning and the amount of atelectasis (%) detected by CT scanning: (Aa)DO2 = 3.0(atelectasis) + 23; r2 = 0.37 (fig. 2). Examples of least and greatest amounts of atelectasis are shown in figures 3 and 4, along with a typical amount of atelectasis.
When more than 0.5% atelectasis was considered significant, the incidence of atelectasis was 64% in the 30%‐oxygen group and 94% in the 80%‐oxygen group (P = not significant). With a 1% atelectasis fraction considered potentially clinically important, the overall incidence of atelectasis was 70%, but, again, there was no statistically significant difference between the groups. Considering CT to be the standard, there were no false‐positive but many false‐negative radiographs.
The arterial partial pressure of oxygen on the first postoperative day was < 60 mmHg in only three patients (one given 80% oxygen and two given 30% oxygen); their atelectasis rates ranged from 4.4% to 9%. One of these patients required supplemental oxygen to maintain pulse oximeter oxygen saturation > 92%. The same patient developed a fever of 38.1°C on the first postoperative day that subsequently resolved without treatment.
Among the 500 patients who participated in the multicenter infection study, 250 were given 30% oxygen and 250 were given 80% oxygen. Pulse oximetry oxygen saturation measurements on the first postoperative morning were virtually identical in the two study groups: 94 ± 3 mmHg versus 94 ± 3 mmHg for the 30%‐oxygen and 80%‐oxygen groups, respectively. Postoperative chest radiographs in these patients were not specifically scored for atelectasis. However, atelectasis was recorded when it was noted in the radiologic report. The incidence was 31% in patients given 30% oxygen and 36% in those given 80% oxygen (P = not significant).
Back to Top | Article Outline

Discussion

Numerous factors contribute to perioperative atelectasis, including anesthesia‐related reduced lung compliance, airway closure, reduced functional residual capacity in the supine position, and pain‐induced restriction of diaphragmmatic movement. 3,33,34 Surgical factors also contribute to ventilation–perfusion mismatch by causing regional differences in diaphragmatic movement and changes in the elastic properties of the lung. 35,36 Intestinal distension and restrictive abdominal bandages further impair recovery of normal diaphragm function. 37 Intraoperative positive end‐expiratory pressure was initially thought to minimize development of atelectasis. However, it was subsequently shown that atelectasis nonetheless develops as soon as treatment is discontinued. 38
High inspired oxygen concentrations—even for brief periods of time—have been shown to induce atelectasis. 7,8 The average amount of atelectasis in our patients was similar to that observed previously. 11 Furthermore, the incidence and severity of atelectasis and poorly aerated regions on the first postoperative day were comparable in patients given either 30% or 80% inspired oxygen in the perioperative period. Consistent with this observation, the incidence of atelectasis as diagnosed by chest radiographs were comparable in the two large groups of patients participating in the multicenter Study of Oxygen and Surgical Wound Infection. These results therefore indicate that oxygen‐induced atelectasis is a short‐term effect that resolves spontaneously—even before patients are mobilized or receive physical therapy.
The major clinical consequence of atelectasis is shunt. The normal (Aa)DO2 during inspiration of room air is approximately 10 mmHg, but it increases to 70 mmHg with 100% oxygen and also increases with age. An (Aa)DO2 of 15 mmHg is therefore generally accepted as normal at age 70 yr. Abnormally high values are especially associated with ventilation–perfusion imbalance and impaired diffusion across the alveolar–capillary membrane. The (Aa)DO2 is thus a useful way to evaluate shunt resulting from atelectasis‐induced alveolar collapse. 39
The (Aa)DO2 values we observed on the first postoperative day (approximately 30 mmHg) were slightly elevated, although the magnitude of this increase is of questionable clinical importance. However, there was no difference between the groups. This is consistent with previous studies in which similar amounts of atelectasis (1–4%) were not associated with clinically important impairment of pulmonary function. 1,2 It is also consistent with our observation that oxygen saturation on the first postoperative day was virtually identical in the two large groups of patients enrolled in the multicenter study. These results are consistent with the atelectasis data and indicate that perioperative administration of 80% oxygen does not worsen pulmonary gas exchange. Comparable forced vital capacity and forced expiratory volume in the first second in the two groups similarly indicate that 80% oxygen does not provoke any impairment in lung volumes lasting until the first postoperative day.
Numerous previous studies identify oxygen‐induced atelectasis in the immediate postoperative period, often accompanied by detectable abnormalities in gas exchange. 2,7–12 However, our purpose was to evaluate pulmonary dysfunction that persisted for a clinically relevant period. We therefore intentionally delayed our formal evaluation of lung function to the first postoperative day. We tested 80% oxygen because this concentration provides many of the benefits of 100% oxygen but with less direct pulmonary toxicity. It therefore remains possible that administration of 100% perioperative oxygen is associated with clinically important atelectasis.
In summary, lung volumes, the incidence and severity of atelectasis, as well as alveolar gas exchange were comparable in patients given 30% and 80% oxygen during and for 2 h after colon resection. We conclude that administration of 80% oxygen in the perioperative period does not worsen lung function. Therefore, patients who may benefit from generous oxygen partial pressures should not be denied supplemental perioperative oxygen for fear of causing atelectasis.
The authors gratefully acknowledge the support and generous assistance of the CT technicians, Marlene Thiem, R.T.A., and Slyvia Kiss, R.T.A., and the generous contributions of Alois Werba, M.D., Cem F. Arkiliç, M.D., and Folke Seibt, M.D.
Back to Top | Article Outline

References

1. Lindberg P, Gunnarsson L, Tokics L, Secher E, Lundquist H, Brismar B, Hedenstierna G: Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand 1992; 36: 546–53

2. Joyce CJ, Baker AB: Effects of inspired gas composition during anaesthesia for abdominal hysterectomy on postoperative lung volumes. Br J Anaesth 1993; 75: 417–21

3. Schwieger I, Gamulin Z, Suter PM: Lung function during anesthesia and respiratory insufficiency in the postoperative period: Pysiological and clinical implications. Acta Anaesthesiol Scand 1989; 33: 527–34

4. Bergman NA: Distribution of inspired gas during anesthesia and artificial ventilation. J Appl Physiol 1963; 18: 1085–9

5. Bendixen HH, Hedley-Ehyte J, Laver MB: Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: A concept of atelectasis. N Engl J Med 1963; 269: 991–6

6. Krayer S, Rehder K, Vettermann J, Didier EP, Ritman EL: Position and motion of the human diaphragm during anesthesia paralysis. A NESTHESIOLOGY 1989; 70: 891–8

7. Rothen HU, Sporre B, Engberg G, Wegenius G, Hogman M, Hedenstierna G: Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. A NESTHESIOLOGY 1995; 82: 832–42

8. Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G: Reexpansion of atelectasis during general anaesthesia may have a prolonged effect. Acta Anaesthesiol Scand 1995; 39: 118–25

9. Magnusson L, Zemgulis V, Wicky S, Tyden H, Thelin S, Hedenstierna G: Atelectasis is a major cause of hypoxemia and shunt after cardiopulmonary bypass: An experimental study. A NESTHESIOLOGY 1997; 87: 1153–63

10. Magnusson L, Zemgulis V, Tenling A, Wernlund J, Tyden H, Thelin S, Hedenstierna G: Use of a vital capacity maneuver to prevent atelectasis after cardiopulmonary bypass: An experimental study. A NESTHESIOLOGY 1998; 88: 134–42

11. Jensen AG, Kalman SH, Eintrei C, Fransson SG, Morales O: Atelectasis and oxygenation in major surgery with either propofol with or without nitrous oxide or isoflurane anaesthesia. Anaesthesia 1993; 48: 1094–6

12. Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B: CT assessment of dependent lung densities in man during general anaesthesia. Acta Radiol 1995; 36: 626–32

13. Atkinson RS, Rushman GB, Lee JA: A Synopsis of Anaesthesia. Bristol, John Wright, 1977

14. Morray JP, Geiduschek JM, Caplan RA, Posner KL, Gild WM, Cheney FW: A comparison of pediatric and adult anesthesia closed malpractice claims. A NESTHESIOLOGY 1993; 78: 461–7

15. Greif R, Laciny S, Rapf B, Sessler DI: Does supplemental perioperative oxygen reduce the incidence of postoperative nausea and vomiting? (abstract). A NESTHESIOLOGY 1998; 89: A1201

16. Tramer MR, Reynolds DJ, Moore RA, McQuay HJ: Efficacy, dose-response, and safety of ondansetron in prevention of postoperative nausea and vomiting: A quantitative systematic review of randomized placebo-controlled trials. A NESTHESIOLOGY 1997; 87: 1277–89

17. Watcha MF, White PF: Postoperative nausea and vomiting: Do they matter? Eur J Anaesthesiol 1995; 10(suppl): 18–23

18. Evans NTS, Naylor PFD: Respiration. Physiologist 1966; 2: 61–72

19. Gottrup F, Firmin R, Rabkin J, Halliday B, Hunt TK: Directly measured tissue oxygen tension and arterial oxygen tension assess tissue perfusion. Crit Care Med 1987; 15: 1030–6

20. Silver IA: The measurement of oxygen tension in healing tissue, Progress in Respiration Rresearch III: International Symposium on Oxygen Pressure Recording. Edited by Kreuzer F. Basel, Karger, 1968, pp 124–35

21. Hoffman WE, Charbel FT, Portillo GG, Edelman G, Ausman JI: Regional tissue pO2, pCO2, pH and temperature measurement. Neurol Res 1998; 20(suppl): S81–4

22. Neubauer RA, James P: Cerebral oxygenation and the recoverable brain. Neurol Res 1998; 20:(suppl) S33–6

23. Hopf HW, Jensen JA, Hunt TK: Calculation of subcutaneous tissue blood flow. Surg Forum 1988; 39: 33–6

24. Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcocci L, Scheuenstuhl H, Chang M, Le AX, Hopf HW, Hunt TK: Wound hypoxia and acidosis limit neutrophil bacterial killing mechansims. Arch Surg 1997; 132: 991–6

25. Babior BM: Oxygen-dependent microbial killing by phagocytes. N Engl J Med 1978; 298: 659–68

26. Hopf HW, Hunt TK, West JM: Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg 1997; 132: 997–1005

27. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA: The biosynthesis of collagen and its disorders: Part one. N Engl J Med 1979; 301: 13–23

28. Hutton JJ, Tappel AL, Udenfriend S: Cofactor and substrate requirements of collagen proline hydroxylase. Arch Biochem Biophys 1967; 118: 231–40

29. Myllyla R, Tuderman L, Kivirikko K: Mechanism of the prolyl hydroxylase reaction 2: Kinetic analysis of the reaction sequence. Eur J Biochem 1977; 80: 349–57

30. Joyce CJ, Baker AB: What is the role of absorption atelectasis in the genesis of perioperative pulmonary collapse? Anaesth Intens Care 1995; 23: 691–6

31. Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascheroni D, Torresin A: Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. A NESTHESIOLOGY 1988; 69: 824–32

32. Rosenblum LJ, Mauceri RA, Wellenstein DE, Thomas FD, Bassano DA, Raasch BN, Chamberlain CC, Heltzman ER: Density pattern in the normal lung as determined by computerized tomography. Radiology 1980; 137: 409–16

33. Rehder K, Sessler AD, Marsh HM: General anesthesia and the lung. Am Rev Respir Dis 1975; 112: 541–63

34. Hedenstierna G, Tokics L: Anesthesia, The Lung. Edited by Crystal RG, West JB. New York, Raven, 1991, pp 2175–83

35. Bindslev L, Hedenstierna G, Santesson J, Gottlieb I, Carvallhas A: Ventilation-perfusion distribution during inhalational anesthesia. Acta Anaesthesiol Scand 1981; 25: 360–71

36. Froese AB, Bryan CH: Effects of anesthesia and paralysis on diaphragmatic mechanism in man. A NESTHESIOLOGY 1974; 41: 242–55

37. Schulman M, Sandler AN, Bradley JW, Young PS, Brebner J: Postthoracotomy pain and pulmonary function following epidural and systemic morphine. A NESTHESIOLOGY 1984; 61: 569–75

38. Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Svensson L, Tokics L: Pulmonary densities during anesthesia with muscular relaxation: A proposal of atelectasis. A NESTHESIOLOGY 1985; 62: 422–8

39. Allen SJ, Tonnesen AS: Advanced respiratory life support, Critical Care Practice. Edited by Hoyt JW, Tonnesen AS, Allen SJ. Philedelphia, WB Saunders, 1991, pp 49–80

Cited By:

This article has been cited 51 time(s).

Acta Anaesthesiologica Scandinavica
Supplemental 80% oxygen does not attenuate postoperative nausea and vomiting after breast surgery
Purhonen, S; Niskanen, M; Wustefeld, M; Hirvonen, E; Hynynen, M
Acta Anaesthesiologica Scandinavica, 50(1): 26-31.
10.1111/j.1399-6576.2005.00866.x
CrossRef
Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie
Pulmonary gas exchange: Classical and modern findings
Henzler, D; Rossaint, R
Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie, 39(): S28-S31.
10.1055/s-2004-818823
CrossRef
Anaesthesist
Oxygen - An effective supplement of perioperative antibiotic treatment?
Meier, J
Anaesthesist, 55(7): 803-804.
10.1007/s00101-006-1024-5
CrossRef
Critical Care Clinics
Perioperative anesthesia issues in the elderly
Liu, LL; Wiener-Kronish, JP
Critical Care Clinics, 19(4): 641-+.
10.1016/S0749-0704(03)00058-7
CrossRef
Anasthesiologie & Intensivmedizin
Oxygen as carrier gas in general anoesthesic
Baum, J; von Bormann, B; Meyer, J; Van Aken, H
Anasthesiologie & Intensivmedizin, 45(3): 124-+.

Anesthesia and Analgesia
The influence of allogeneic red blood cell transfusion compared with 100% oxygen ventilation on systemic oxygen transport and skeletal muscle oxygen tension after cardiac surgery
Suttner, S; Piper, SN; Kumle, B; Lang, K; Rohm, KD; Isgro, F; Boldt, J
Anesthesia and Analgesia, 99(1): 2-11.
10.1213/01.ANE.0000120163.44315.47
CrossRef
Archives of Surgery
Perioperative Supplemental Oxygen Therapy and Surgical Site Infection A Meta-analysis of Randomized Controlled Trials INVITED CRITIQUE
Napolitano, LM
Archives of Surgery, 144(4): 366-367.

Anaesthesia
The effect of auricular acupuncture on anaesthesia with desflurane
Taguchi, A; Sharma, N; Ali, SZ; Dave, B; Sessler, DI; Kurz, A
Anaesthesia, 57(): 1159-1163.

Anesthesia and Analgesia
Dosing oxygen: A tricky matter or a piece of cake?
Lindahl, SGE; Mure, M
Anesthesia and Analgesia, 95(6): 1472-1473.
10.1213/01.ANE.0000035350.21206.7F
CrossRef
European Journal of Cancer Care
Nausea and vomiting after surgery for colorectal cancer
[Anon]
European Journal of Cancer Care, 9(3): 135.

Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Best evidence in anesthetic practice - Prevention: supplemental oxygen reduces the incidence of surgical-wound infection - Commentary
Skrobik, Y
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 48(9): 845-846.

British Journal of Anaesthesia
New concepts of atelectasis during general anaesthesia
Magnusson, L; Spahn, DR
British Journal of Anaesthesia, 91(1): 61-72.
10.1093/bja/aeg085
CrossRef
Colorectal Disease
The management of malignant large bowel obstruction: ACPGBI position statement
Finan, PJ; Campbell, S; Verma, R; MacFie, J; Gatt, M; Parker, MC; Bhardwaj, R; Hall, NR
Colorectal Disease, 9(): 1-17.

Journal of Applied Physiology
Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans
Arai, TJ; Henderson, AC; Dubowitz, DJ; Levin, DL; Friedman, PJ; Buxton, RB; Prisk, GK; Hopkins, SR
Journal of Applied Physiology, 106(4): 1057-1064.
10.1152/japplphysiol.90759.2008
CrossRef
Jama-Journal of the American Medical Association
Supplemental oxygen and risk of surgical wound infection - Reply
Belda, FJ; Sessler, DI
Jama-Journal of the American Medical Association, 295(): 1642-1643.

British Journal of Anaesthesia
Just a little oxygen to breathe as you go off to sleep...is it always a good idea?
Lumb, AB
British Journal of Anaesthesia, 99(6): 769-771.
10.1093/bja/aem329
CrossRef
13Th International Conference on Electrical Bioimpedance and the 8Th Conference on Electrical Impedance Tomography 2007
Analysis of ventilatory conditions under different inspiratory oxygen concentrations and positive end-expiratory pressure levels by EIT
Schmitz, G; Pulletz, S; Schadler, D; Zick, G; Scholz, J; Weiler, N; Frerichs, I
13Th International Conference on Electrical Bioimpedance and the 8Th Conference on Electrical Impedance Tomography 2007, 17(): 524-527.

New England Journal of Medicine
Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection
Greif, R; Akca, O; Horn, EP; Kurz, A; Sessler, DI
New England Journal of Medicine, 342(3): 161-167.

Anesthesia and Analgesia
The effect of increased FIO2 before tracheal extubation on postoperative atelectasis
Benoit, Z; Wicky, S; Fischer, JF; Frascarolo, P; Chapuis, C; Spahn, DR; Magnusson, L
Anesthesia and Analgesia, 95(6): 1777-1781.
10.1213/01.ANE.0000019201.72651.6C
CrossRef
Hernia
The effect of supplemental 70% oxygen on postoperative nausea and vomiting in patients undergoing inguinal hernia surgery
Sadrolsadat, SH; Shoroghi, M; Farahbakhsh, F; Moharreri, RS; Sheikhvatan, M; Abbasi, A
Hernia, 12(2): 167-171.
10.1007/s10029-007-0303-7
CrossRef
Anaesthesist
Emergency treatment of thoracic trauma
Klein, U; Laubinger, R; Malich, A; Hapich, A; Gunkel, W
Anaesthesist, 55(): 1172-1188.
10.1007/s00101-006-1092-6
CrossRef
Expert Review of Anti-Infective Therapy
Controversies in host defense against surgical site infection
Qadan, M; Cheadle, WG
Expert Review of Anti-Infective Therapy, 7(9): 1043-1047.
10.1586/ERI.09.88
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Preoxygenation and upper airway patency control
Bourgain, JL
Annales Francaises D Anesthesie Et De Reanimation, 22(): 41S-52S.
10.1016/S0750-7658(03)00125-4
CrossRef
Lancet
Can anaesthetic management influence surgical-wound healing?
Buggy, D
Lancet, 356(): 355-357.

Clinical Infectious Diseases
Nonpharmacological prevention of surgical wound infections
Sessler, DI; Akca, O
Clinical Infectious Diseases, 35(): 1397-1404.

Anesthesia and Analgesia
The influence of protocol pain and risk on patients' willingness to consent for clinical studies: A randomized trial
Treschan, TA; Scheck, T; Kober, A; Fleischmann, E; Birkenberg, B; Petschnigg, B; Akca, O; Lackner, FX; Jandl-Jager, E; Sessler, DI
Anesthesia and Analgesia, 96(2): 498-506.
10.1213/01.ANE.0000039321.57744.7B
CrossRef
Lancet
Perioperative management and monitoring in anaesthesia
Buhre, W; Rossaint, R
Lancet, 362(): 1839-1846.

Anz Journal of Surgery
Perioperative high-dose oxygen therapy in vascular surgery
Puckridge, PJ; Saleem, HA; Vasudevan, TM; Holdaway, CM; Ferrar, DW
Anz Journal of Surgery, 77(6): 433-436.
10.1111/j.1445-2197.2007.04089.x
CrossRef
Archives of Surgery
Perioperative Supplemental Oxygen Therapy and Surgical Site Infection A Meta-analysis of Randomized Controlled Trials
Qadan, M; Akca, O; Mahid, SS; Hornung, CA; Polk, HC
Archives of Surgery, 144(4): 359-366.

Wound Repair and Regeneration
Supplemental perioperative oxygen and fluids to improve surgical wound outcomes: Translating evidence into practice
Whitney, JD
Wound Repair and Regeneration, 11(6): 462-467.

Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie
Routine use of high inspired oxygen concentration - Pro
Danzeisen, O; Priebe, HJ
Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie, 40(6): 350-353.
10.1055/s-2005-861245
CrossRef
Anaesthesia and Intensive Care
A review of the risks and benefits of nitrous oxide in current anaesthetic practice
Myles, PS; Leslie, K; Silbert, B; Paech, MJ; Peyton, P
Anaesthesia and Intensive Care, 32(2): 165-172.

Journal of Clinical Monitoring and Computing
Atelectasis formation during anesthesia: Causes and measures to prevent it
Hedenstierna, G; Rothen, HU
Journal of Clinical Monitoring and Computing, 16(): 329-335.

Anesthesia and Analgesia
Supplemental oxygen does not reduce the incidence of postoperative nausea and vomiting after ambulatory gynecologic laparoscopy
Purhonen, S; Turunen, M; Ruohoaho, UM; Niskanen, M; Hynynen, M
Anesthesia and Analgesia, 96(1): 91-96.
10.1213/01.ANE.0000040007.58378.29
CrossRef
Ciencia Rural
Hemodyinamic effects of several inspired oxygen fractions in spontaneously breathing dogs submitted to continuous infusion of propofol
Nunes, N; Lopes, PCF; dos Santos, PSP; de Paula, DP; Nishimori, CTD; Carareto, R; Sousa, MG; Barbosa, VF; Camacho, AA
Ciencia Rural, 38(3): 729-735.

Obesity Surgery
Supplemental Postoperative Oxygen and Tissue Oxygen Tension in Morbidly Obese Patients
Kabon, B; Rozum, R; Marschalek, C; Prager, G; Fleischmann, E; Chiari, A; Kurz, A
Obesity Surgery, 20(7): 885-894.
10.1007/s11695-010-0168-1
CrossRef
Anesthesia and Analgesia
Supplemental oxygen, but not supplemental crystalloid fluid, increases tissue oxygen tension in healthy and anastomotic colon in pigs
Kimberger, O; Fleischmann, E; Brandt, S; Kugener, A; Kabon, B; Hiltebrand, L; Krejci, V; Kurz, A
Anesthesia and Analgesia, 105(3): 773-779.
10.1213/01.ane.0000277490.90387.96
CrossRef
Jama-Journal of the American Medical Association
Effect of High Perioperative Oxygen Fraction on Surgical Site Infection and Pulmonary Complications After Abdominal Surgery The PROXI Randomized Clinical Trial
Meyhoff, CS; Wetterslev, J; Jorgensen, LN; Henneberg, SW; Hogdall, C; Lundvall, L; Svendsen, PE; Mollerup, H; Lunn, TH; Simonsen, I; Martinsen, KR; Pulawska, T; Bundgaard, L; Bugge, L; Hansen, EG; Riber, C; Gocht-Jensen, P; Walker, LR; Bendtsen, A; Johansson, G; Skovgaard, N; Helto, K; Poukinski, A; Korshin, A; Walli, A; Bulut, M; Carlsson, PS; Rodt, SA; Lundbech, LB; Rask, H; Buch, N; Perdawid, SK; Reza, J; Jensen, KV; Carlsen, CG; Jensen, FS; Rasmussen, LS
Jama-Journal of the American Medical Association, 302(): 1543-1550.

Ciencia Rural
Pulmonary atelectasis in dogs during general anesthesia
Lopes, PCF; Nunes, N
Ciencia Rural, 40(1): 246-253.

Archivos De Bronconeumologia
Pen-Operative Atelectasis and Alveolar Recruitment Manoeuvres
Rama-Maceiras, P
Archivos De Bronconeumologia, 46(6): 317-324.
10.1016/j.arbes.2009.10.010
CrossRef
Anesthesia and Analgesia
Ondansetron is no more effective than supplemental intraoperative oxygen for prevention of postoperative nausea and vomiting
Goll, V; Akca, O; Greif, R; Freitag, H; Arkilic, CF; Scheck, T; Zoeggeler, A; Kurz, A; Krieger, G; Lenhardt, R; Sessler, DI
Anesthesia and Analgesia, 92(1): 112-117.

Mayo Clinic Proceedings
A randomized controlled trial of oxygen for reducing nausea and vomiting during emergency transport of patients older than 60 years with minor trauma
Kober, A; Fleischackl, R; Scheck, T; Lieba, F; Strasser, H; Friedmann, A; Sessler, DI
Mayo Clinic Proceedings, 77(1): 35-38.

Trials
Perioperative oxygen fraction - effect on surgical site infection and pulmonary complications after abdominal surgery: a randomized clinical trial. Rationale and design of the PROXI-Trial
Meyhoff, CS; Wetterslev, J; Jorgensen, LN; Henneberg, SW; Simonsen, I; Pulawska, T; Walker, LR; Skovgaard, N; Helto, K; Gocht-Jensen, P; Carlsson, PS; Rask, H; Karim, S; Carlsen, CG; Jensen, FS; Rasmussen, LS
Trials, 9(): -.
ARTN 58
CrossRef
Veterinary Radiology & Ultrasound
Radiographic Characterization of Presumed Plate-Like Atelectasis in 75 Nonanesthetized Dogs and 15 Cats
Giglio, RF; Winter, MD; Reese, DJ; Thrall, DE; Abbott, JR; Graham, JP; Berry, CR
Veterinary Radiology & Ultrasound, 54(4): 326-331.
10.1111/vru.12035
CrossRef
Anesthesiology
Optimal Oxygen Concentration during Induction of General Anesthesia
Edmark, L; Kostova-Aherdan, K; Enlund, M; Hedenstierna, G
Anesthesiology, 98(1): 28-33.

PDF (245)
Anesthesiology
Obesity Decreases Perioperative Tissue Oxygenation
Kabon, B; Nagele, A; Reddy, D; Eagon, C; Fleshman, JW; Sessler, DI; Kurz, A
Anesthesiology, 100(2): 274-280.

PDF (261)
Anesthesiology
Supplemental Intraoperative Oxygen Augments Antimicrobial and Proinflammatory Responses of Alveolar Macrophages
Kotani, N; Hashimoto, H; Sessler, DI; Muraoka, M; Hashiba, E; Kubota, T; Matsuki, A
Anesthesiology, 93(1): 15-25.

PDF (1011)
Anesthesiology
Supplemental Oxygen for the Prevention of Nausea and Vomiting
Greif, R; Sessler, D
Anesthesiology, 93(2): 585.

PDF (108)
Anesthesiology
Is It Time to Retire High-concentration Nitrous Oxide?
Hopf, HW
Anesthesiology, 107(2): 200-201.
10.1097/01.anes.0000271868.07684.5c
PDF (102) | CrossRef
Anesthesiology
Avoidance of Nitrous Oxide for Patients Undergoing Major Surgery: A Randomized Controlled Trial
Myles, PS; Leslie, K; Chan, MT; Forbes, A; Paech, MJ; Peyton, P; Silbert, BS; Pascoe, E; the ENIGMA Trial Group,
Anesthesiology, 107(2): 221-231.
10.1097/01.anes.0000270723.30772.da
PDF (564) | CrossRef
European Journal of Anaesthesiology (EJA)
The influence of perioperative oxygen concentration on postoperative lung function in moderately obese adults
Zoremba, M; Dette, F; Hunecke, T; Braunecker, S; Wulf, H
European Journal of Anaesthesiology (EJA), 27(6): 501-507.
10.1097/EJA.0b013e32832e08c3
PDF (329) | CrossRef
Back to Top | Article Outline
Keywords:
Anesthesia; pulmonary function; pulmonary shunt; radiology; surgery.

© 1999 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.
Login

Article Tools

Images

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.