Skip Navigation LinksHome > December 1998 - Volume 89 - Issue 6 > Low‐dose Lidocaine Suppresses Experimentally Induced Hyperal...
Clinical Investigations

Low‐dose Lidocaine Suppresses Experimentally Induced Hyperalgesia in Humans

Koppert, Wolfgang MD; Zeck, Susanne MD; Sittl, Reinhard MD; Likar, Rudolf MD; Knoll, Rainer; Schmelz, Martin MD

Free Access
Article Outline
Collapse Box

Author Information

Collapse Box


Background: The antinociceptive effects of systemically administered local anesthetics have been shown in various conditions, such as neuralgia, polyneuropathy, fibromyalgia, and postoperative pain. The objective of the study was to identify the peripheral mechanisms of action of low‐dose local anesthetics in a model of experimental pain.
Methods: In a first experimental trial, participants (n = 12) received lidocaine systemically (a bolus injection of 2 mg/kg in 10 min followed by an intravenous infusion of 2 mg [middle dot]‐1 [middle dot] h‐1 for another 50 min). In a second trial, modified intravenous regional anesthesia was administered to exclude possible central analgesic effects. In one arm, patients received an infusion of 40 ml lidocaine, 0.05%; in their other arm, 40 ml NaCl, 0.9%, served as a control. In both trials, calibrated tonic and phasic mechanical and chemical (histamine) stimuli were applied to determine differentially the impairment of tactile and nociceptive perception.
Results: Mechanical sensitivity to touch, phasic mechanical stimuli of noxious intensity, and heat pain thresholds remained unchanged after systemic and regional application of the anesthetic. In contrast, histamine‐induced itch (intravenous regional anesthesia), axon reflex flare (systemic treatment), and development of acute mechanical hyperalgesia during tonic pressure (12 N; 2 min) of an interdigital web was significantly suppressed after both treatments.
Conclusions: Increasing painfulness during sustained pinching has been attributed to excitation and simultaneous sensitization of particular A [small sigma, Greek]‐ and C‐nociceptors. This hyperalgesic mechanism seems to be particularly sensitive to low concentrations of lidocaine. These findings confirm clinical experience with lidocaine in pain states dominated by hyperalgesia.
SYSTEMICALLY administered local anesthetics have been shown to alleviate chronic pain states such as neuralgia, polyneuropathy, fibromyalgia, and postoperative pain in most [1‐8] but not all studies. [9‐11] In contrast, in acute experimental pain models such as a tourniquet, heat and cold pain thresholds were unchanged after low‐dose lidocaine. [12,13] Interestingly, systemic lidocaine also decreased capsaicin‐induced axon reflex flare without a change in sensory thresholds. [14] In the current study, we tried to locate the site of action of a low concentration of lidocaine by comparing the antihyperalgesic effects of intravenous administration and administration in a modified intravenous regional anesthesia (IVRA, Bier block) with placebo treatment (saline). The effectiveness of lidocaine was tested in two models of mechanical hyperalgesia. In addition, touch sensitivity, thermal pain thresholds, and neurogenic inflammation induced by histamine iontophoresis were evaluated. As a central model of mechanical hyperalgesia, the “wind‐up” phenomenon was induced by applying trains of impact stimuli that are perceived as increasingly painful by the participants. [15] As a peripheral model of hyperalgesia, tonic pinching of skin folds over periods of 2 min as performed. This stimulus is experienced as increasingly painful by the participants and also sensitized the pinched skin site to subsequent tonic pressure stimuli. [16,17]
According to clinical observations that low‐dose lidocaine preferentially alleviates pain states of dominated by hyperalgesia, we wanted to evaluate the effectiveness of low concentrations of lidocaine in acute experimental models of hyperalgesia. In addition, use of an IVRA that prevents systemic spread of the lidocaine should allow the peripheral effects of the anesthetic to be studied.
Back to Top | Article Outline

Materials and Methods

The study was designed to be randomized and double blinded. Twelve healthy, right‐handed subjects (6 women, 6 men; mean age, 33.4 yr; age range, 27‐48 yr) participated in two experimental trials 1 month apart. Each volunteers gave informed consent to take part in the study; the experimental protocol was approved by the Ethics Committee of the Medical Faculty of the University of Erlangen‐Nuremberg.
Back to Top | Article Outline
Stimulation Procedures
Touch Perception. Calibrated von Frey filaments (Stoelting, Chicago, IL) were used to determine detection thresholds at the medial aspect of the central volar forearm. Participants were instructed to close their eyes and report when they felt a touch sensation. Filaments exerting increasing bending forces were applied five times each for 1 s until the participant correctly sensed at least three of five trials.
Heat Stimulus. Heat stimuli were delivered from a halogen lamp (beam diameter, 1 cm) controlled by feedback from a thermocouple attached to the skin. [18] A skin site 5 cm proximal to the wrist on the central volar forearm was marked, and temperature was increased from 32 [degree sign]C at a rate of 0.66 [degree sign]C/s until the participants stopped the stimulus at the pain threshold. The values of each two stimulus repetitions were averaged.
Pinch Stimulus. The mechanical stimulator for pinching has been described previously. [16] The interdigital webs between the second and third fingers were squeezed at a force of 12 N for periods of 2 min (probe diameter, 6 mm). This stimulus is experienced as increasingly painful and also sensitizes the pinched skin site to subsequent tonic pressure stimuli. [16,17] Because conventional mechanoheat‐sensitive C fibers adapt to this kind of stimulus, the origin of the hyperalgesia remained unclear. [19] In recent microneurography studies, mechanoinsensitive “silent” C‐nociceptors were found to be recruited during the tonic pressure stimulus [20] and thus could account, at least in part, for increasing painfulness of this stimulus.
During each stimulus, the volunteers were asked to rate the painfulness at 15‐s intervals. A rating of 100 should be assigned to stimuli of pain threshold intensity. Volunteers were instructed to rate the perceived intensity of the sensation to other stimuli in proportion to this modulus, whereby 200 would indicate an intensity of sensation that was twice as intense as a pain threshold stimulus. They were asked to estimate the intensity of nonpainful or “prepain” sensations by giving proportionate values less than 100. [21,22]
Mechanical Impact Stimulus. Impact stimuli were delivered by perpendicularly shooting a small plastic cylinder (0.5 g, 4‐mm diameter) against the skin of the central volar forearm 10 cm proximal from the wrist using a pressurized air‐driven stimulator. [23] A rapid sequence of three subsequent impact stimuli (1 Hz) was applied at a velocity of 14 m/s, and participants were asked to give pain ratings for each stimulus (using the same rating scale as described before). The trains of impact stimuli are perceived as increasingly painful. The origin of this type of mechanical hyperalgesia has been located in the spinal cord, and it is responsive to the N‐methyl‐D‐aspartate receptor channel blocker ketamine. [15,24] Nociceptors readily discharge at stimulus intensities of less than one half the impact velocity used in this study, and pain thresholds were expected at the speed of the bullet of about 10 m/s. [22]
Histamine Iontophoresis. Histamine iontophoresis was used to evaluate itch ratings and neurogenic inflammation on the volar side of the central forearm. Histamine dihydrochloride (Sigma Chemical, Deisenhofen, Germany) was dissolved in distilled water to a 1% (wt/vol) solution. A piece of cotton wool, soaked in the histamine solution, was placed in an acrylic applicator with a diameter of 1.5 mm and a volume of 20 [micro sign]l. A positive current of 1 mA (A 360 R‐B; WPI, New Haven, CT) was applied for 20 s via a silver‐silver chloride electrode in this applicator with the indifferent electrode (3 x 3 cm) attached 10 cm distal to the stimulus site, as described previously. [25]
Itch ratings were given at 15‐s intervals following acoustic signals by moving a lever controlling a display of a visual analog scale. The end points of the scale were defined as “no itch” (0) and “maximum itch” (10). Visual analog scale values were recorded on‐line using a personal computer via an interface card (DAP; Microstar Bellevue, WA) for 10 min after the end of iontophoresis and were stored for further analysis.
Video Flare Analysis. Images of the respective skin areas were recorded using an RGB camera (Cohu 8312; Cohu, San Diego, CA). The three‐color frames (red, green, and blue) of a 10‐ x 10‐cm skin area were digitized in true color by a framegrabber (Oculus TCX2; Coreco, St. Laurent, Canada) every 15 s.
Off‐line analysis was performed to detect the border of the reddening, and thus to determine the size of the flare reaction. This analysis was performed for each image of a sequence by using dedicated computer software. Details of data acquisition and analysis are described in another publication. [26]
Thermography. An AGEMA (Danderyd, Sweden) camera system was used for thermography. The thermograms of the stimulated sites of the forearm were scanned and processed by an OS9 computer every 15 s using GESOTEK software (Darmstadt, Germany). The raw data were stored on a hard disk. The thermographic flare size, mean temperature increase, and time course of warming were analyzed off‐line using dedicated software. [27]
Back to Top | Article Outline
Experimental Protocol
All participants were familiar with the stimulation procedures to be used in the study.
Systemic Lidocaine. The participants received an intravenous bolus injection of lidocaine (2 mg/kg in 10 min) followed by an intravenous infusion at 2 mg [middle dot] kg‐1 [middle dot] h‐1 for another 50 min. As a placebo, the participants received an infusion of saline in an equal manner. Both randomized sessions were performed within a 1‐week interval. The volunteers were monitored by electrocardiography, pulse oximetry, and noninvasive blood pressure recordings during and for as long as 2 h after the experiment.
Heat pain thresholds and pain ratings to impact stimuli were measured at the predefined skin sites before infusion of lidocaine or saline at baseline. Test sites were spaced by at least 5 cm to avoid sensitization. The first pinch stimulus was delivered immediately after completing the bolus injection of lidocaine (t = 10 min), followed by two subsequent pinch stimuli at intervals of 20 min. After each pinch stimulus, heat and impact stimuli were applied. Between the second (t = 30 min) and third pinch stimuli (t = 50 min), histamine iontophoresis was performed on the central volar forearm.
Thermographic images of the forearm were recorded before infusion, immediately after infusion and, as described already, for a period of 10 min after histamine iontophoresis. Venous blood samples were taken from a vein of the noninfused arm after completing the protocol col (t = 58‐60 min). Plasma was stored at ‐72 [degree sign]C for later analysis. Lidocaine levels were analyzed with a validated high‐pressure liquid chromatography method using a C 18 reversed‐phase column (Machery Nagel, Duren, Germany). The mobile phase was 30% methanol and 70% water, containing 2 g sodium acetate (pH 3). Detection was performed at 220 nm with a Waters 484 ultraviolet detector (Waters, Milford, MA). Plasma samples were extracted with C 18 solid‐phase extraction columns (ict, Bad Homburg, Germany) using etidocaine as the internal standard. The columns were rinsed twice with methanol and buffer (20 ml of 1 M Na2 CO3 in 200 ml water). One milliliter of plasma, together with the internal standard, was added to the column and rinsed twice with buffer. Elution of lidocaine was performed with 200 [micro sign]l methanol. The method was linear up to 10,000 ng/ml with a recovery rate more than 90%.
Regional Lidocaine. To exclude possible central effects of lidocaine, a second trial was performed using intravenous regional anesthesia (IVRA, Bier block). Double‐cuff tourniquets were placed around both upper arms. Intravenous cannulae (22 gauge) were placed in a vein of the dorsum of the hand. The arms were elevated and Esmarch bandages were applied to exsanguinate the arms. The cuffs were then inflated to 250 mmHg and kept at that pressure while the Esmarch bandages were unwound. In a randomized manner, either 40 ml lidocaine, 0.05%, or saline were injected. Ten minutes later, pinch stimuli were applied on both sides, followed by determination of heat pain thresholds and application of impact stimuli, as described before. Histamine iontophoresis was performed at the end of this protocol (20‐22 min after inflating the tourniquets) at both central volar forearms. Because of absent blood circulation in this trial, no thermographic images and flare areas were evaluated. Ten minutes after termination of iontophoresis, the experimenter was unblinded and opened the tourniquet of the arm that received vehicle infusion. Venous blood samples were taken from this arm 2 min after the tourniquet was opened to determine systemic lidocaine levels. Ischemia lasted 28‐30 min.
After ischemia of approximately 30 min A [small beta, Greek] and A [small delta, Greek] fibers are blocked, which can be verified by absent electrically evoked sensory potentials [28] or psychophysically by absent touch and cold sensation, [29] whereas the functions of unmyelinated fibers remain unaffected (acoustically evoked sympathetic skin response, [28] warmth, and second pain [29]). In pilot experiments (n = 3), touch‐evoked sensation and subjective muscle function began to deteriorate after 20‐25 min of ischemia, whereas heat pain thresholds were unchanged for more than 30 min. Paralysis and increasing discomfort, which could influence psychophysic measurements, led us to limit the duration of ischemia to 30 min.
Back to Top | Article Outline
Statistical Analysis
Pain and itch ratings and videographic flare sizes were evaluated using analysis of variance (ANOVA) in a two‐way within‐subjects (subsequent measures) model. Planned comparison and Scheffe's post hoc tests were performed when suitable. The data of thermographic evaluation were analyzed using the Student's paired t test.
Significance levels throughout this study were P < 0.05; all data were expressed as the mean +/− SD, except the pain ratings, which are presented, nonnormalized, as the mean +/− SEM. The STATISTICA software package (Statsoft, Tulsa, OK) was used for statistical analyses.
Back to Top | Article Outline


Systemic Lidocaine
During bolus injection (10 min), nine volunteers reported light‐headedness, drowsiness, tinnitus, or all of these, especially after lidocaine treatment, but in three instances also after the placebo. During infusion of lidocaine, five volunteers felt tired. After finishing the study, they were asked to identify the session in which they received the drug. Six volunteers gave a correct answer, three gave an incorrect answer, and four could not make a decision.
Mean plasma levels of lidocaine were 3,468 +/− 983 ng/ml. No significant correlations were found between lidocaine plasma levels and gender, age, weight, or pain ratings. In addition, no significant gender differences were found in pain ratings, pain thresholds, or antihyperalgesic effects. Touch perception as measured by von Frey filament detection threshold remained unchanged after infusion of either saline or lidocaine.
Figure 1
Figure 1
Image Tools
Pinch Stimulus. Tonic pinch stimuli of interdigital webs were described as being “increasingly painful” during control conditions. Pain ratings increased during each stimulus and with subsequent repetitions, reflecting the development of hyperalgesia (Figure 1A). After administration of lidocaine, however, the increase of pain ratings during each stimulus (P < 0.05, P < 0.001, P < 0.001 for the first, second, and third stimuli, respectively; treatment x time effect; by ANOVA) and the development of hyperalgesia with subsequent stimuli (P < 0.001; by ANOVA, treatment x repetition effect) was significantly reduced (Figure 1A).
Heat Pain Thresholds. Heat pain thresholds were 44.4 +/− 2.7 [degree sign]C and 45.5 +/− 3.8 [degree sign]C (control and lidocaine) during baseline conditions. After intravenous infusion of saline (44.6 +/− 1.7 [degree sign]C 44.1 +/− 2.1] [degree sign]C and 44.3 +/− 2.7 [degree sign]C; at t = 14, 24, and 34 min, respectively) or low‐dose lidocaine (45.4 +/− 3.1 [degree sign]C 46.1 +/− 2.4 [degree sign]C and 45.6 +/− 3.1 [degree sign]C; at t = 14, 24, and 34 min, respectively), the thresholds did not change significantly.
Figure 2
Figure 2
Image Tools
Impact Stimuli. The participants reported that the trains of three phasic mechanical stimuli (14m/s; 1 Hz) were increasingly painful (80 +/− 8, 93 +/− 7, and 102 +/− 7 for the first, second, and third stimuli, respectively (Figure 2A). Pain ratings remained nearly unchanged after intraveous infusion of saline (80 +/− 10, 94 +/− 10, and 105 +/− 11 at 54 min) or lidocaine (78 +/− 11, 90 +/− 11, and 93 +/− 9 at 54 min).
Histamine Iontrophoresis. Iontrophoretic application of histamine induced the well‐known wheal‐and‐flare reaction and concomitant itch sensations.
Figure 3
Figure 3
Image Tools
The levels and time courses of itch ratings in both treatment groups showed no significant differences (Figure 3A). Itching started within 30 s after discontinuation of the iontophoresis, reaching peak ratings after approximately 1 min, followed by a slow decrease during the remaining observation period.
Figure 4
Figure 4
Image Tools
The increment of the visible flare was significantly slower during lidocaine treatment (Figure 4). The final flare size, determined 10 min after histamine iontophoresis, was significantly smaller in lidocaine‐treated participants compared with saline treatment (6.75 +/− 5.7 cm2 vs. 10.74 +/− 6.7 cm2; P < 0.05; by ANOVA, planned comparison).
In contrast, the maximum temperature and maximum temperature increase, time course of temperature increase and size of thermographic flare were not affected by the medication (by Student's t test; difference not significant).
Back to Top | Article Outline
Regional Lidocaine
Ten minutes after inflation of the tourniquets and administration of saline or lidocaine, pinch stimulation was performed, followed by measurements of heat pain thresholds (t = 15 min), impact stimulation (t = 18 min), and histamine iontophoresis (t = 20 min). Blood samples were taken from the saline‐treated arm 2 min after the tourniquet on the control arm only was deflated (t = 28‐30 min). No detectable lidocaine levels were found in these samples, indicating that the tourniquet on the lidocaine‐treated arm was effective to prevent systemic spread. None of the participants reported any side effects after the tourniquet on the lidocaine‐treated arm was released.
Pinch Stimuli. Pain ratings during IVRA were significantly reduced during the first pinch stimulus (P x 0.01, for the first stimulation; treatment x time effect; by ANOVA). Scheffer post hoc tests revealed significant differences between pain ratings in the last 30 s of the stimulus (P < 0.05; by ANOVA, Scheffe post hoc tests; Figure 1B). No significant differences in pain ratings were observed between the IVRA setting and systemic application (by ANOVA; differences not significant). In the IVRA setting, only one pinch stimulus could applied because of the limited time of ischemia.
Heat Stimuli. The heat pain threshold decreased slightly from a baseline value of 44.8 +/− 4.5 [degree sign]C to 44.7 +/− 4.5 [degree sign]C in the saline‐treated arm and to 43.7 +/− 5.5 [degree sign]C in the lidocaine‐treated arm 16 min after the onset of IVRA. No significant difference was observed between the saline‐and lidocaine‐treated arm (by ANOVA; differences not significant).
Impact Stimuli. Trains of three phasic mechanical stimuli (14 m/s; 1 Hz) induced increasing pain ratings during control conditions (81 +/− 9, 89 +/− 9, and 93 +/− 10 for the first, second, and third stimuli, respectively) and with lidocaine (76 +/− 7, 87 +/− 12, and 92 +/− 11 for the first, second, and third stimuli, respectively). Pain ratings remained nearly unchanged after intravenous administration of saline (81 +/− 9, 92 +/− 11, and 99 +/− 12; t = 18 min) or lidocaine (74 +/− 11, 87 +/− 12, and 92 +/− 11; t = 18 min; Figure 2B).
Histamine Iontophoresis. Histamine‐induced itch was short lasting during IVRA conditions (Figure 3B). Approximately 4 min after iontophoresis, no detectable itch sensations were observed. Peak itch ratings were significantly lower after regional administration of lidocaine (2.8 +/− 1.7 vs. 3.9 +/− 0.8, P < 0.05; by ANOVA, planned comparison), and the time course of itch sensations differed significantly (P < 0.05; treatment x time effect; by ANOVA). However, regardless of lidocaine treatment, itch ratings were also reduced by the IVRA itself when compared with the systematic setting (P < 0.001; by ANOVA).
Back to Top | Article Outline


Analgesic versus Antihyperalgesic Effects of Low‐dose Lidocaine
In accordance with previous studies, [14] lidocaine in a low concentration of 2 or 3 [micro sign]g/ml (serum concentration) did not alter touch sensitivity, thermal pain thresholds, or mechanically evoked sensations. Lidocaine levels in our studies corresponded to those found during clinical administration. Levels between 1 and 5 [micro sign]g/ml were described, and severe neurotoxicity (convulsion, unconsciousness) can be assumed above a level of 10 to 15 [micro sign]g/ml. Sedative effects cannot be ruled out completely in a concentration range of approximately 3 [micro sign]g/ml; however, unchanged heat pain tresholds and ratings of mechanical impact do not confirm a relevant effect in the systemic setting. A reliable estimate of lidocaine concentration during IVRA could not be given because of absent blood circulation after exsanguination. Considering the distribution volume of the exsanguinated arm, we chose the greater amount of 20 mg lidocaine in 40 ml saline, in accordance with the amount used for systemic administration. No impairment of perception to touch and temperature was observed because of low‐dose lidocaine. Therefore, the results of the study cannot be attributed to a simple conduction block induced by lidocaine, which is used commonly for local anesthesia.
We also did not observe any effect of low‐dose lidocaine on the mechanically induced wind‐up phenomenon. The origin of this type of mechanical hyperalgesia has been located in the spinal cord, and it is responsive to the N‐methyl‐D‐aspartate receptor channel blocker ketamine. [15,24] The increase in pain ratings induced by trains of impact stimuli (1 Hz) was not significantly reduced by lidocaine in the IVRA setting or after systemic administration. High‐frequency discharge of afferent C and A [small delta, Greek] fibers of more than 10 Hz, which is elicited by our impact stimulation, [22] should have provided conditions necessary for use‐dependent blocking action of lidocaine. Obviously, the concentration of lidocaine was too low to alter the measures of mechanosensitivity used in our study.
Back to Top | Article Outline
Antihyperalgesic Action of Low‐dose Lidocaine
Interestingly, lidocaine reduced mechanical hyperalgesia during tonic pinch stimuli. In previous studies, [16,17,30] the increase in pain ratings of repetitive pinching was used primarily to evaluate antihyperalgesic effects of antiinflammatory analgesics. In our study, the pressure was increased from 8 to 12 N, which resulted in a more pronounced increase in pain ratings also during one stimulus. This was of particular importance in the IVRA setting in which only one pinch stimulus could be applied. During a tonic pinch stimulus, mechanosensitive afferent fibers adapt to the stimulus. [19] Conversely, mechanoinsensitive C‐fibers in humans, which do not respond to short‐lasting mechanical stimuli, were found to be recruited and increasingly activated during the pinch stimulus. [20] The discharge in these mechanoinsensitive C‐nociceptors paralleled the pain ratings of the participants. A characteristic property of the mechanoinsensitive fibers in addition to low conduction velocity is pronounced activity‐induced hyperpolarization, [31] which could make them more susceptible to the lidocaine effect. Interestingly, lidocaine also has inhibited capsaicin‐induced flare and secondary hyperalgesia. [14] Again, mechanoinsensitive C‐ [20] and A [small delta, Greek]‐nociceptors [32] provide ongoing discharge after capsaicin injection, which could explain the lasting pain sensation that our participants felt. Mechanosensitive “polymodal” units, however, only respond with a “shriek” of activation lasting for a new seconds after the injection and remain desensitized at the injection site thereafter. [33]
Back to Top | Article Outline
Antipuritic Effects of Low‐dose Lidocaine
Lidocaine inhibited itch sensations in the IVRA setting and reduced histamine‐induced flare size after systemic application. These observations correspond with the antipuritic effect of low‐dose lidocaine reported in patients with the acquired immunodeficiency syndrome who had intractable itching. [34] In a recent article, [35] the “itch receptor” was reported to be found among the mechanoinsensitive C‐nociceptors. A subgroup of mechanoinsensitive C‐nociceptors gave a sustained response to histamine application that paralleled the itch sensation of humans. [35] Again, this subgroup was characterized by extremely low conduction velocities of approximately 0.5 m/s, which would confirm the hypothesis that low‐dose lidocaine preferentially suppresses activity in mechanoinsensitive C‐nociceptors.
In contrast to observations during the flare response, no effects on itch sensations were observed during systemic lidocaine treatment. This could be explained by different lidocaine concentrations at the nociceptor. In the IVRA setting, shorter‐lasting itch sensations were observed. Because of absent perfusion, temperature in the exsanguinated arm decreases. Lower temperatures, however, counteract itch and flare reactions to histamine [36] and thus could explain the difference in itch rating between the intravenous regional anesthesia setting and systemic treatment. In addition, painful stimuli were reported to decrease the intensity and duration of histamine‐induced itch, whereas injection of histamine in an anesthetic bleb resulted in more intense and prolonged itch sensation.[section sign] [double vertical bar] In this respect, the pain arising from the tourniquet could counteract itch sensation and contribute to a shorter duration in the IVRA setting.
Back to Top | Article Outline
Systemic versus Peripheral Effects of Low‐dose Lidocaine
In this study, we administered lidocaine either systematically or in a modified IVRA model, which excludes central mechanisms of action. In accordance with the findings of Heavner et al., [37] touch sensitivity and thermal and mechanical pain sensations were unchanged for at least 20 min of ischemia. Care was taken to keep experimental conditions as similar as possible between the systemic application and the IVRA setting. However, several differences limit a direct comparison. The lack of blood circulation leads to a decrease in skin temperature, which might affect nociceptor discharge; in addition, ischemia limited the duration of this experiment so only one, instead of three, subsequent pinch stimuli could be applied in the IVRA setting. Therefore, the experimental conditions do not allow us to directly compare the effects of lidocaine in the IVRA and systemic setting. In both settings, however, a comparison with the saline‐treated control is possible. An inhibiting effect on histamine‐induced C‐fiber activation and a reduction of mechanical hyperalgesia during the first pinch stimulus could be shown in the IVRA setting. Thus, we conclude that there is a peripheral antihyperalgesic and antipuritic effect of a low concentration of lidocaine. The reduction of pinch‐induced hyperalgesia was more obvious after systemic application, presumably because three repetititions could be performed.
A spinal action of low‐dose lidocaine has been proposed for decreasing pain in patients with fibromyalgia. [38] But the mechanisms of peripheral and spinal action do not necessarily have to be different. Assuming that the spinal ramifications of primary afferents have similar properties as their peripheral counterparts, an axonal mode of action could also affect the spinal terminals. The problem of conduction blockade at spinal branching points has been discussed by Wall [39] for long‐range myelinated afferents in the rat. It is at least conceivable that low concentrations of lidocaine similarly affect mechanoinsensitive nociceptors at their peripheral and spinal arborization.
Our study provided indirect evidence that low‐dose lidocaine also acts peripherally on the mechanoinsensitive C‐nociceptors and thus decreases mechanical hyperalgesia and histamine‐induced itch. Conventional “polymodal” mechanoheat‐sensitive nociceptors remain unaffected, and therefore heat pain thresholds and mechanical pain sensations are unchanged. However, this hypothesis needs further confirmation from electrophysiologic studies. Pilot microneurography experiments in collaboration with Torebjork's group in Uppsala gave promising results, showing that low‐dose lidocaine increases the drop‐out rate to electrical stimulation only in mechanoinsensitive units (Schmelz M, Schmidt R, Koppert W, Handwerker HO, Torebjork HE, unpublished results). The differential sensitivity of mechanosensitive and mechnoinsensitive C‐nociceptors thus could provide the basis for pharmacologic development of new antihyperalgesic drugs.
[section sign] Brull SJ, Atanassoff PG, Zhang J, Greenquist K, Silverman DG, LaMotte RH: Enhancement of experimental pruritus and secondary dysesthesia with local anesthesia (abstract). Anesthesiology 1995; 83:A676
[double vertical bar] Brull SJ, Atanassoff PG, Zhang J, Greenquist K, Silverman DG, LaMotte RH: Capsaicin‐induced allodynia attenuates histamine‐induced itch and alloknesis (abstract). Anesthesiology 1995; 83:A728
Back to Top | Article Outline


1. Ferrante FM, Paggioli J, Cherukuri S, Arthur GR: The analgesic response to intravenous lidocaine in the treatment of neuropathic pain. Anesth Analg 1996; 82:91-7

2. Sorensen J, Bengtsson A, Backman E, Henriksson KG, Bengtsson M: Pain analysis in patients with fibromyalgia. Effects of intravenous morphine, lidocaine, and ketamine. Scand J Rheumatol 1995; 24:360-5

3. Kastrup J, Petersen P, Dejgard A, Angelo HR, Hilsted J: Intravenous lidocaine infusion-a new treatment of chronic painful diabetic neuropathy? Pain 1987; 28:69-75

4. Rowbotham MC, Reisner KL, Fields HL: Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology 1991; 41:1024-8

5. Lindstrom P, Lindblom U: The analgesic effect of tocainide in trigeminal neuralgia. Pain 1987; 28:45-50

6. Chabal C, Jacobson L, Mariano A, Chaney E, Britell CW: The use of oral mexiletine for the treatment of pain after peripheral nerve injury. Anesthesiology 1992; 76:513-7

7. Stracke H, Meyer UE, Schumacher HE, Federlin K: Mexiletine in the treatment of diabetic neuropathy. Diabetes Care 1992; 15:1550-5

8. Galer BS, Miller KV, Rowbotham MC: Response to intravenous lidocaine infusion differs based on clinical diagnosis and site of nervous system injury. Neurology 1993; 43:1233-5

9. Ellemann K, Sjogren P, Banning AM, Jensen TS, Smith T, Geertsen P: Trial of intravenous lidocaine on painful neuropathy in cancer patients. Clin J Pain 1989; 5:291-4

10. Insler SR, O'Connor M, Samonte AF, Bazaral MG: Lidocaine and the inhibition of postoperative pain in coronary artery bypass patients. J Cardiothorac Vasc Anesth 1995; 9:541-6

11. Cepeda MS, Delgado M, Ponce M, Cruz CA, Carr DB: Equivalent outcomes during postoperative patient-controlled intravenous analgesia with lidocaine plus morphine versus morphine alone. Anesth Analg 1996; 83:102-6

12. Rowlingson JC, DiFazio CA, Foster J, Carron H: Lidocaine as an analgesic for experimental pain. Anesthesiology 1980; 52:20-2

13. Bach FW, Jensen TS, Kastrup J, Stigsby B, Dejgard A: The effect of intravenous lidocaine on nociceptive processing in diabetic neuropathy. Pain 1990; 40:29-34

14. Wallace MS, Laitin S, Licht D, Yaksh TL: Concentration-effect relations for intravenous lidocaine infusions in human volunteers: Effects on acute sensory thresholds and capsaicin-evoked hyperpathia. Anesthesiology 1997; 86:1262-72

15. Nikolajsen L, Hansen CL, Nielsen J, Keller J, Arendt NL, Jensen TS: The effect of ketamine on phantom pain: A central neuropathic disorder maintained by peripheral input. Pain 1996; 67:69-77

16. Forster C, Magerl W, Beck A, Geisslinger G, Gall T, Brune K, Handwerker HO: Differential effects of dipyrone, ibuprofen, and paracetamol on experimentally induced pain in man. Agents Actions 1992; 35:112-21

17. Forster C, Anton F, Reeh PW, Weber E, Handwerker HO: Measurement of the analgesic effects of aspirin with a new experimental algesimetric procedure. Pain 1988; 32:215-22

18. Beck PW, Handwerker HO, Zimmermann M: Nervous outflow from the cat's foot during noxious radiant heat stimulation. Brain Res 1974; 67:373-86

19. Adriaensen H, Gybels J, Handwerker HO, Van Hees J: Nociceptor discharges and sensations due to prolonged noxious mechanical stimulation-a paradox. Hum Neurobiol 1984; 3:53-8

20. Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjork HE: Differential sensitivity of mechanosensitive and -insensitive C-fibers in human skin to tonic pressure and capsaicin (abstract). I. Soc Neurosci Abstr 1997; 23:1004

21. Handwerker HO, Kobal G: Psychophysiology of experimentally induced pain. Physiol Rev 1993; 73:639-71

22. Koltzenburg M, Handwerker HO: Differential ability of human cutaneous nociceptors to signal mechanical pain and to produce vasodilatation. J Neurosci 1994; 14:1756-65

23. Kohlloffel LU, Koltzenburg M, Handwerker HO: A novel technique for the evaluation of mechanical pain and hyperalgesia. Pain 1991; 46:81-7

24. Arendt NL, Petersen FS, Fischer M, Bak P, Bjerring P, Zbinden AM: The effect of N-methyl-D-aspartate antagonist (ketamine) on single and repeated nociceptive stimuli: A placebo-controlled experimental human study. Anesth Analg 1995; 81:63-8

25. Magerl W, Westerman RA, Mohner B, Handwerker HO: Properties of transdermal histamine iontophoresis: Differential effects of season, gender, and body region. J Invest Dermatol 1990; 94:347-52

26. Nischik M, Forster C: Analysis of skin erythema using true color images. IEEE Trans Med Imag 1997; 16:711-6

27. Greiner T, Nischik M, Schmelz M, Forster C, Handwerker HO: Neurogenic flare responses are heterogeneous in superficial and deep layers of human skin. Neurosci Lett 1995; 185:33-6

28. Casale R, Glynn C, Buonocore M: The role of ischaemia in the analgesia which follows Bier's block technique. Pain 1992; 50:169-75

29. Schmidt R, Schmelz M, Ringkamp M, Handwerker HO, Torebjork HE: Innervation territories of mechanically activated C nociceptor units in human skin. J Neurophysiol 1997; 78:2641-8

30. Kilo S, Forster C, Geisslinger G, Brune K, Handwerker HO: Inflammatory models of cutaneous hyperalgesia are sensitive to effects of ibuprofen in man. Pain 1995; 62:187-93

31. Weidner C, Schmidt R, Hansson B, Handwerker HO, Torebjork HE, Schmelz M: Different axonal properties of mechanosensitive and mechanoinsensitive C-nociceptors (abstract). Soc Neurosci Abstr 1998; 24:383

32. Ringkamp M, Peng YB, Campbell JN, Meyer RA: Intradermal capsaicin produces a vigorous discharge in mechanically-insensitive A-fiber nociceptors of the monkey. II. Soc Neurosci Abstr 1997; 23:1258

33. LaMotte RH, Lundberg LER, Torebjork HE: Pain, hyperalgesia and activity in nociceptive-C units in humans after intradermal injections of capsaicin. J Physiol Lond 1992; 448:749-64

34. Fishman SM, Caneris OA, Stojanovic MP, Borsook D: Intravenous lidocaine for treatment-resistant pruritus. Am J Med 1997; 102:584-5

35. Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjork HE: Specific C-receptors for itch in human skin. J Neurosci 1997; 17:8003-8

36. Bromm B, Scharein E, Darsow U, Ring J: Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett 1995; 187:157-60

37. Heavner JE, Leinonen L, Haasio J, Kytta J, Rosenberg PH: Interaction of lidocaine and hypothermia in Bier blocks in volunteers. Anesth Analg 1989; 69:53-9

38. Sorensen J, Bengtsson A, Backman E, Henriksson KG, Bengtsson M: Pain analysis in patients with fibromyalgia. Effects of intravenous morphine, lidocaine, and ketamine. Scand J Rheumatol 1995; 24:360-5

39. Wall PD: Do nerve impulses penetrate terminal arborizations? A pre-presynaptic control mechanism. Trends Neurosci 1995; 18:99-103

Cited By:

This article has been cited 50 time(s).

Pain Physician
An Updated Review of the Diagnostic Utility of Cervical Facet Joint Injections
Falco, FJE; Datta, S; Manchikanti, L; Sehgal, N; Geffert, S; Singh, V; Smith, HS; Boswell, MV
Pain Physician, 15(6): E807-E838.

Pain Physician
An Update of the Systematic Assessment of the Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks
Falco, FJE; Manchikanti, L; Datta, S; Sehgal, N; Geffert, S; Onyewu, O; Singh, V; Bryce, DA; Benyamin, RM; Simopoulos, TT; Vallejo, R; Gupta, S; Ward, SP; Hirsch, JA
Pain Physician, 15(6): E869-E907.

Pain Physician
An Update of the Effectiveness of Therapeutic Lumbar Facet Joint Interventions
Falco, FJE; Manchikanti, L; Datta, S; Sehgal, N; Geffert, S; Onyewu, O; Zhu, J; Coubarous, S; Hameed, M; Ward, SP; Sharma, M; Hameed, H; Singh, V; Boswell, MV
Pain Physician, 15(6): E909-E953.

Anesthesia and Analgesia
The effect of systemic lidocaine on pain and secondary hyperalgesia associated with the heat/capsaicin sensitization model in healthy volunteers
Dirks, J; Fabricius, P; Petersen, KL; Rowbotham, MC; Dahl, JB
Anesthesia and Analgesia, 91(4): 967-972.

Regional Anesthesia and Pain Medicine
Lidocaine priming reduces tourniquet pain during intravenous regional anesthesia: A preliminary study
Estebe, JP; Gentili, ME; Langlois, G; Mouilleron, P; Bernard, F; Ecoffey, C
Regional Anesthesia and Pain Medicine, 28(2): 120-123.
Journal of Neuroscience
Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin
Weidner, C; Schmelz, M; Schmidt, R; Hansson, B; Handwerker, HO; Torebjork, HE
Journal of Neuroscience, 19(): 10184-10190.

Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres
Schmelz, M; Schmid, R; Handwerker, HO; Torebjork, HE
Brain, 123(): 560-571.

Pain Medicine
Efficacy of 5-Day Continuous Lidocaine Infusion for the Treatment of Refractory Complex Regional Pain Syndrome
Schwartzman, RJ; Patel, M; Grothusen, JR; Alexander, GM
Pain Medicine, 10(2): 401-412.
Veterinary Anaesthesia and Analgesia
Systemic lidocaine infusion as an analgesic for intraocular surgery in dogs: a pilot study
Smith, LJ; Bentley, E; Shih, A; Miller, PE
Veterinary Anaesthesia and Analgesia, 31(1): 53-63.

Anesthesia and Analgesia
The Effect of a Peripheral Block on Inflammation-Induced Prostaglandin E2 and Cyclooxygenase Expression in Rats
Beloeil, H; Gentili, M; Benhamou, D; Mazoit, JX
Anesthesia and Analgesia, 109(3): 943-950.
Mechano-insensitive nociceptors encode pain evoked by tonic pressure to human skin
Schmidt, R; Schmelz, M; Torebjork, HE; Handwerker, HO
Neuroscience, 98(4): 793-800.

American Journal of Veterinary Research
Effects of intravenous administration of lidocaine on the thermal threshold in cats
Pypendop, BH; Ilkiw, JE; Robertson, SA
American Journal of Veterinary Research, 67(1): 16-20.

Veterinary Anaesthesia and Analgesia
Antinociceptive, cardiopulmonary, and sedative effects of five intravenous infusion rates of lidocaine in conscious dogs
MacDougall, LM; Hethey, JA; Livingston, A; Clark, C; Shmon, CL; Duke-Novakovski, T
Veterinary Anaesthesia and Analgesia, 36(5): 512-522.
Experimental and Clinical Psychopharmacology
A clinical laboratory model for direct assessment of medication-induced antihyperalgesia and subjective effects: Initial validation study
Eissenberg, T; Riggins, EC; Harkins, SW; Weaver, MF
Experimental and Clinical Psychopharmacology, 8(1): 47-60.

Psychosomatic Medicine
Effects of relaxation and stress on the capsaicin-induced local inflammatory response
Lutgendorf, S; Logan, H; Kirchner, HL; Rothrock, N; Svengalis, S; Iverson, K; Lubaroff, D
Psychosomatic Medicine, 62(4): 524-534.

Reversal of visceral and cutaneous hyperalgesia by local rectal anesthesia in irritable bowel syndrome (IBS) patients
Verne, GN; Robinson, ME; Vase, L; Price, DD
Pain, 105(): 223-230.
Annales Francaises D Anesthesie Et De Reanimation
Effect of local anesthetics on the postoperative inflammatory response
Beloeil, H; Mazoit, JX
Annales Francaises D Anesthesie Et De Reanimation, 28(3): 231-237.
British Journal of Anaesthesia
Local anaesthetics inhibit signalling of human NMDA receptors recombinantly expressed in Xenopus laevis oocytes: role of protein kinase C
Hahnenkamp, K; Durieux, ME; Hahnenkamp, A; Schauerte, SK; Hoenemann, CW; Vegh, V; Theilmeier, G; Hollmann, MW
British Journal of Anaesthesia, 96(1): 77-87.
Journal of Pain and Symptom Management
A Phase II Pilot Study to Evaluate Use of Intravenous Lidocaine for Opioid-Refractory Pain in Cancer Patients
Sharma, S; Rajagopal, MR; Palat, G; Singh, C; Haji, AG; Jain, D
Journal of Pain and Symptom Management, 37(1): 85-93.
Effect of pre- or post-traumatically applied i.v. lidocaine on primary and secondary hyperalgesia after experimental heat trauma in humans
Holthusen, H; Irsfeld, S; Lipfert, P
Pain, 88(3): 295-302.

British Journal of Anaesthesia
Novel ideas of local anaesthetic actions on various ion channels to ameliorate postoperative pain
Strichartz, GR
British Journal of Anaesthesia, 101(1): 45-47.
Pain Clinic
Koppert, W
Pain Clinic, 12(2): 157-158.

Anesthesia and Analgesia
The effects of the local Anesthetics lidocaine and procaine on glycine and gamma-aminobutyric acid receptors expressed in xenopus oocytes
Hara, K; Sata, T
Anesthesia and Analgesia, 104(6): 1434-1439.
Molecular and Basic Mechanisms of Anesthesia
Blockade of TTX-resistant Na+ currents by local anesthetics: Functional impact in sensory neurones
Scholz, A
Molecular and Basic Mechanisms of Anesthesia, (): 228-232.

Equine Veterinary Journal
Effect of systemic lidocaine on visceral and somatic nociception in conscious horses
Robertson, SA; Sanchez, LC; Merritt, AM; Doherty, TJ
Equine Veterinary Journal, 37(2): 122-127.

Experimental incision-induced pain in human skin: effects of systemic lidocaine on flare formation and hyperalgesia
Kawamata, M; Takahashi, T; Kozuka, Y; Nawa, Y; Nishikawa, K; Narimatsu, E; Watanabe, H; Namiki, A
Pain, 100(): 77-89.
PII S0304-3959(02)00233-6
Journal of Pain
A Randomized study of the effect of oral lamotrigine and hydromorphone on pain and hyperglesia following heat/capsaicin sensitization
Petersen, KL; Maloney, A; Hoke, F; Dahl, JB; Rowbotham, MC
Journal of Pain, 4(7): 400-406.
Acta Chirurgica Belgica
Acute rehabilitation program after laparoscopic colectomy using intravenous lidocaine
Kaba, A; Detroz, BJ; Laurent, SR; Lamy, ML; Joris, JL
Acta Chirurgica Belgica, 105(1): 53-58.

Strategies for the treatment of cancer pain in the new millennium
Ripamonti, C; Dickerson, ED
Drugs, 61(7): 955-977.

Differentiation of peripheral and central hyperalgesic effects of systemic procaine
Gerdemann, U; Bruckl, V; Nassr, NAS; Markert, D; Sittl, R; Koppert, W
Schmerz, 18(3): 189-+.
Anesthesia and Analgesia
The Effect of Perioperative Intravenous Lidocaine on Postoperative Pain and Immune Function
Yardeni, IZ; Beilin, B; Mayburd, E; Levinson, Y; Bessler, H
Anesthesia and Analgesia, 109(5): 1464-1469.
Veterinary Clinics of North America-Small Animal Practice
Physiology of pain
Lamont, LA; Tranquilli, WJ; Grimm, KA
Veterinary Clinics of North America-Small Animal Practice, 30(4): 703-+.

The Bier block as an experimental tool to differentiate peripheral and central effects of analgesics on people
Koppert, W; Sittl, R; Schmelz, M
Schmerz, 14(2): 69-76.

Journal of Dermatological Science
Itch - mediators and mechanisms
Schmelz, M
Journal of Dermatological Science, 28(2): 91-96.
PII S0923-1811(01)00167-0
Anesthesia and Analgesia
Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery
Koppert, W; Weigand, M; Neumann, F; Sittl, R; Schuettler, J; Schmelz, M; Hering, W
Anesthesia and Analgesia, 98(4): 1050-1055.
Veterinary Clinics of North America-Small Animal Practice
Adjunctive analgesic therapy
Lamont, LA; Tranquilli, WJ; Mathews, KA
Veterinary Clinics of North America-Small Animal Practice, 30(4): 805-+.

Proceedings of the 9Th World Congress on Pain
Subpopulations of human C nociceptors and their sensory correlates
Torebjork, E
Proceedings of the 9Th World Congress on Pain, 16(): 199-206.

Journal of Investigative Dermatology
Perceptual matching for assessment of itch; Reliability and responsiveness analyzed by a rank-invariant statistical method
Stener-Victorin, E; Lundeberg, T; Kowalski, J; Opdal, L; Sjostrom, J; Lundeberg, L
Journal of Investigative Dermatology, 121(6): 1301-1305.

European Journal of Pain
Mechanically induced axon reflex and hyperalgesia in human UV-B burn are reduced by systemic lidocaine
Koppert, W; Brueckl, V; Weidner, C; Schmelz, M
European Journal of Pain, 8(3): 237-244.
Low-dose lidocaine reduces secondary hyperalgesia by a central mode of action
Koppert, W; Ostermeier, N; Sittl, R; Weidner, C; Schmelz, M
Pain, 85(): 217-224.

Journal of Pain
Will ion-channel blockers be useful for management of nonneuropathic pain?
Petersen, KL; Rowbotham, MC
Journal of Pain, 1(3): 26-34.
Tetrodotoxin-resistant action potentials in dorsal root ganglion neurons are blocked by local anesthetics
Scholz, A; Vogel, W
Pain, 89(1): 47-52.

Pathological C-fibres in patients with a chronic painful condition
Orstavik, K; Weidner, C; Schmidt, R; Schmelz, M; Hilliges, M; Jorum, E; Handwerker, H; Torebjork, E
Brain, 126(): 567-578.
Intravenous Lidocaine Infusion Facilitates Acute Rehabilitation after Laparoscopic Colectomy
Kaba, A; Laurent, SR; Detroz, BJ; Sessler, DI; Durieux, ME; Lamy, ML; Joris, JL
Anesthesiology, 106(1): 11-18.

PDF (503)
Intravenous Lidocaine Inhibits Visceral Nociceptive Reflexes and Spinal Neurons in the Rat
Ness, TJ
Anesthesiology, 92(6): 1685-1691.

PDF (675)
Primer of Postoperative Pruritus for Anesthesiologists
Waxler, B; Dadabhoy, ZP; Stojiljkovic, L; Rabito, SF
Anesthesiology, 103(1): 168-178.

PDF (466)
Antiinflammatory Effect of Peripheral Nerve Blocks after Knee Surgery: Clinical and Biologic Evaluation
Piriou, P; Chauvin, M; Fletcher, D; Martin, F; Martinez, V; Mazoit, JX; Bouhassira, D; Cherif, K; Gentili, ME
Anesthesiology, 109(3): 484-490.
PDF (704) | CrossRef
Mitochondrial Injury and Caspase Activation by the Local Anesthetic Lidocaine
Johnson, ME; Uhl, CB; Spittler, K; Wang, H; Gores, GJ
Anesthesiology, 101(5): 1184-1194.

PDF (1998)
Journal of Neurosurgical Anesthesiology
Systemic Lidocaine Inhibits Remifentanil-induced Hyperalgesia via the Inhibition of cPKCgamma Membrane Translocation in Spinal Dorsal Horn of Rats
Cui, W; Li, Y; Li, S; Yang, W; Jiang, J; Han, S; Li, J
Journal of Neurosurgical Anesthesiology, 21(4): 318-325.
PDF (455) | CrossRef
Journal of Pediatric Hematology/Oncology
Continuous Lidocaine Infusion for the Relief of Refractory Malignant Pain in a Terminally Ill Pediatric Cancer Patient
Massey, GV; Pedigo, S; Dunn, NL; Grossman, NJ; Russell, EC
Journal of Pediatric Hematology/Oncology, 24(7): 566-568.

PDF (155)
Back to Top | Article Outline
Bier block; histamine; itch; wind up.

© 1998 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.

Article Tools



Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.