Skip Navigation LinksHome > September 1989 - Volume 71 - Issue 3 > Pressure and Flow Limitations of Anesthesia Ventilators.

Pressure and Flow Limitations of Anesthesia Ventilators.

Marks, James D. M.D.; Schapera, Anthony M.B.Ch.B.; Kraemer, Roger W. R.C.P.; Katz, Jeffrey A. M.D.

Collapse Box


The effect of increasing airway pressure on the mean inspiratory flow and maximum minute ventilation (VE) capabilities of five anesthesia ventilators (Ohio Anesthesia, Airshields Ventimeter, Ohmeda 7000, Draeger AV-E and Siemens 900D) was compared to identify mechanical factor(s) limiting intraoperative ventilation of the lungs of patients with acute respiratory failure. The effect of increasing airway pressure on mean inspiratory flow was determined by cycling each ventilator through increasing restrictors. Maximum VE was measured under three study conditions using a test lung: 1) low compliance (10-30 ml/cmH2O) and minimal airflow resistance; 2) positive end-expiratory pressure (PEEP) of 0, 10, and 20 cmH2O at a compliance of 20 ml/cmH2O with minimal airflow resistance; and 3) increased resistance (19 +/- 11 cmH2O [middle dot] 1-1[middle dot]s-1) and compliance of 30 ml/cmH2O. As airway pressure increased from 0 to 80 cmH2O, mean inspiratory flow decreased markedly for all ventilators except the Siemens. The Siemens ventilator delivered the greatest VE under all three conditions and maintained VE when airway pressure increased due to decreased compliance or the application of PEEP; all other ventilators markedly decreased VE under these conditions. The addition of airway resistance reduced maximal VE for all ventilators by limiting the maximal inspiratory duty cycle (T1/TTOT). Thus, mean inspiratory flow of conventional anesthesia ventilators decreases with increasing airway pressure. The decreased inspiratory flow limits maximum VE when airway pressure is elevated because of decreased lung-thorax compliance and/or increased airway resistance, such as that characterizing patients with acute respiratory failure. Significant airway resistance further limits maximum VE by limiting the maximal T1/TTOT that can be used without increasing end-expiratory lung pressure. The data indicate that a critical care type ventilator with pressure-independent inspiratory flow should be considered for intraoperative ventilation when VE exceeds 15 1/min or peak airway pressures exceed 50 cmH2O.
(C) 1989 American Society of Anesthesiologists, Inc.
Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.

Article Tools


Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.