麻醉科住院医师通常不能恰当使用 2007 美国心脏病学会/美国心脏协会（ACC/AHA）指南评估模拟患者

Michael M. Vigoda, MD, MBA, * BobbieJean Sweitzer, MD, †
Nikola Miljkovic, ‡ Kristopher L. Arheart, EdD, ¶ Shari Messinger, PhD, ¶
Keith Candiotti, MD, * and David Lubarsky, MD, MBA *

* Department of Anesthesiology, and † Department of Epidemiology & Public Health, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, Florida; ‡ Department of Anesthesiology, University of Chicago, Chicago, Illinois; and ¶Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska

摘要 背景 2007 美国心脏病学会/美国心脏协会 (American College of Cardiology/American Heart Association, ACC/AHA) 有关术前心脏评估与非心脏手术医疗保障的指南是术前心脏评估的公认标准。麻醉培训计划要求教授这些评估方法。我们评估了美国全国范围内麻醉科住院医师在评估临床常见场景下模拟患者时能够正确使用 ACC/AHA 指南所建议的测试评估方法的百分比人数。方法 24 所培训机构中的麻醉科住院医师志愿者参加，设置以外科手术、患者危险因素和患者功能能力为特征的 6 种场景。均随机分配所有场景和针对每种场景的 5 种推荐建议。分配之前，美国 24 所不同培训机构的高级麻醉医师与 2007 年 ACC/AHA 指南的第一作者一同确认该网络调查的推荐建议恰当。结果 参加的 548 名住院医师占美国麻醉科培训医师的 12%，包括 48 名 PGY-1s（麻醉专科培训第一年）、166 名临床麻醉工作一年的住院医师（CA-1）、161 名 CA-2s 和 173 名 CA-3s。评估活动性心脏病的患者时，建议的评估与指南一致的住院医师为 78% (95% 可信上限）。然而，在剩余的 5 种场景中，给出恰当建议的住院医师为 46% (95% 可信上限)。结论 结果显示，美国全国范围内不足一半的麻醉科住院医师能够正确地应用术前心脏评估标准的方法。必须进一步研究来阐明正确的干预措施，如决策支持工具的应用、增加常规使用指南的清晰度、调整教育计划和（或）负责教员更熟悉该教材。

Abstract BACKGROUND: The 2007 American College of Cardiology/American Heart Association (ACC/AHA) Guidelines on Perioperative Cardiac Evaluation and Care for Noncardiac Surgery is the accepted standard for perioperative cardiac evaluation. Anesthesiology training programs are required to teach these algorithms. We estimated the percentage of residents nationwide who correctly applied suggested testing algorithms from the ACC/AHA guidelines when they evaluated simulated patients in common clinical scenarios. METHODS: Anesthesiology resident volunteers at 24 training programs were presented with 6 scenarios characterized by surgical procedure, patient’s risk factors, and patient’s functional capacity. Scenarios and 5 possible recommendations per scenario were both presented in randomized orders. Senior anesthesiologists at 24 different United States training programs along with the first author of the 2007 ACC/AHA guidelines validated the appropriate recommendation to this web-based survey before distribution. RESULTS: The 548 resident participants, representing 12% of anesthesiology trainees in the United States, included 48 PGY-1s (preliminary year before anesthesia training), 166 Clinical Anesthesia Year 1 (CA-1) residents, 161 CA-2s, and 173 CA-3s. For patients with an active cardiac condition, the upper 95% confidence bound for the percent of residents who recommended evaluations consistent with the guidelines was 78%. However, for the remaining 5 scenarios, the upper 95% confidence bound for the percent of residents with an appropriate recommendation was 46%. CONCLUSIONS: The results show that fewer than half of anesthesiology residents nationwide correctly demonstrate the approach considered the standard of care for preoperative cardiac evaluation. Further study is necessary to elucidate the correct intervention(s), such as use of decision support tools, increased clarity of guidelines for routine use,
麻醉与镇痛 中文版 2013年8月 第四期

调整在教育项目中，以及或更高熟悉的负责教授与材料。

(Anesth Analg 2011; 112: 940-9)

围术期的心脏并发症可发生增加死亡率[1-3]和医疗费用[4]。美国心脏病学会 (American College of Cardiology，ACC) 联合美国心脏协会 (American Heart Association，AHA) 发布了围术期心脏评估的循证指南。这些指南已经得到美国麻醉医师协会的认可和美国卫生保健研究与质量部门的批准。然而，这些指南的贯彻执行一直存在问题[5-7]。

虽然美国麻醉学委员会要求麻醉科住院医师培训教授这些评估方法，但是研究显示各类其他专科的住院医师缺乏他们所在特定专业的临床指南知识[8-11]。在此项调查中，我们估计了能正确运用ACC/AHA指南所建议的测试方法的住院医师百分比。这是通过住院医师评估临床常见场景中的模拟患者和从一系列的选项中选出一项推荐建议来完成的。

方法

24 所麻醉科培训机构参与了本项研究。每所机构都获得了 IRB 的批准。

我们设计了一个网络调查来评价 2007 年 ACC/AHA 关于围术期非心脏手术患者心血管评估指南的应用 (图 1)[12-14]。如下描述设置的 6 种临床场景。

ACC/AHA 评估方法以 5 个步骤和 7 个不同终点

![流程图](image)

图 1 2007 年 ACC/AHA 指南评估方法。≥50 岁患者非心脏手术的心脏和医疗评估方法是根据活动性心脏病、已知心血管疾病或者心脏危险因素来进行。用于特定患者及方法的第二步可确定推荐建议。

注：ACC/AHA = 美国心脏病学会/美国心脏协会；HR = 心率；LOE = 证据等级；MET = 代谢当量
的流程图来表示。第一步至第四步各有一单独的终点。第五步是最复杂的过程，要求同时考虑手术类型和现存临床危险因素及其数量。作为住院医师应根据这种逐步方法进行评估。用于特定患者及方案的第一步可制定推荐建议。

我们排除第一步（终点为需要急诊手术的患者评估），并考虑 6 种非急诊非心脏手术的场景。此调查评价 ACC/AHA 指南在第二至第四步和第五步 3 个不同决定点的运用。

场景 1

有活性性心脏病（相当于 ACC/AHA 评估内容的第二步）

场景 2

无活性性心脏病，低风险手术（相当于 ACC/AHA 评估内容的第三步）

场景 3

无活性性心脏病，中等风险手术，功能储备良好，有 1 个临床危险因素（相当于 ACC/AHA 评估内容的第四步）

场景 4

无活性性心脏病，中等风险手术，功能储备差或不明，2 个临床危险因素（相当于 ACC/AHA 评估内容的第五步）

场景 5

无活性性心脏病，血管手术（1 个或 2 个危险因素）（相当于 ACC/AHA 评估内容的第五步）

场景 6

无活性性心脏病，中等风险手术，无临床危险因素（相当于 ACC/AHA 评估内容的第五步）

根据的判断，每种场景下评估内容的正确应用可使实践中带来正确的推荐建议。

3. 正确推荐建议的验证

4. 数据分析

数据分析包括 3 个主要部分，包括量表、诊断结果、
比人数无显著差异（表1）。场景2中，CA-3s给出自正确的推荐建议百分比人数明显多于CA-1s（38% vs 24%，*P* = 0.009）。场景6中，PGY-1s给出准确推荐建议的百分比人数明显少于其他培训年者（8% vs CA-1 21%，*P* = 0.034；CA-2 24%，*P* = 0.015；CA-3 32%，*P* = 0.001）。场景6中，CA-1s给出正确推荐建议的百分比人数明显少于CA-3s（*P* = 0.04）。

每种场景中所有培训年者选择错误推荐建议的模式相似（在线附录3，http://links.lww.com/AAG/A213）。

应答时间与正确应答的几率无关，但是场景1例外；在场景1中，应答时间较长的住院医师更有可能选择错误的推荐建议。（在线附录4，见数字化辅助内容4，http://links.lww.com/AAG/A214）。

讨 论

近30年来，一直是由ACC/AHA实践指南的联合工作小组对有关术后心血管检查和检测的文献进行回顾和整和[12-14]。2007年ACC/AHA指南明确“很多患者受益于术前的高级检测”。但是实际工作中，不明确这些指南遵循得如何。改变个体医师实践、医院规程和标准化程序是一个渐进渐渐递的过程。住院医师常常根据带教老师如何解决问题的方式来学习检测的选择方法。我们调查了住院医师在评估常见临床场景中的模拟患者时是否应用了ACC/AHA指南中的推荐建议检测方案。

对于患有活动性心脏病的患者（场景1），78%的住院医师建议的评估与指南一致（95%可信上限）。然而，在其他5种场景下，46%的住院医师给出了适当的推荐建议（95%可信上限）。我们不知道下列哪些可能原因可解释这些结果：指南混乱而不实用，当前推荐的建议不适用于麻醉实践工作，带教医师知识欠缺和（或）教育计划需要改进。

我们的结果与另一项有关围术期临床医师的初步研究相一致。除了活动性心血管疾病的场景下87%的临床医师采用与指南一致的推荐建议外；而在其他5种场景下却低于50%，即场景2 为45%，场景3 为45%，场景4 为38%，场景5 为36%，场景6 为45%。无论如何，这项研究结果与大众期望的所普遍坚持临床指南大不一致。
<table>
<thead>
<tr>
<th>场景</th>
<th>培训年</th>
<th>正确的百分比（95% 可信区间）</th>
<th>配对比较的 (P) 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一步</td>
<td>全体</td>
<td>67.6 (54.6 ~ 78.4)</td>
<td>PGY-1</td>
</tr>
<tr>
<td>第二步</td>
<td>PGY-1</td>
<td>67.6 (43.0 ~ 85.3)</td>
<td>CA-1</td>
</tr>
<tr>
<td>第二步</td>
<td>CA-1</td>
<td>69.1 (53.6 ~ 81.3)</td>
<td>CA-2</td>
</tr>
<tr>
<td>第二步</td>
<td>CA-2</td>
<td>62.3 (47.1 ~ 75.4)</td>
<td>0.89</td>
</tr>
<tr>
<td>第二步</td>
<td>CA-3</td>
<td>71.1 (56.9 ~ 82.0)</td>
<td>0.64 (P) = 0.33</td>
</tr>
<tr>
<td>第三步</td>
<td>31.2 (21.4 ~ 43.1)</td>
<td>0.75</td>
<td>0.78</td>
</tr>
<tr>
<td>第一步</td>
<td>全体</td>
<td>29.3 (15.4 ~ 48.6)</td>
<td>CA-1</td>
</tr>
<tr>
<td>第二步</td>
<td>CA-1</td>
<td>24.1 (14.9 ~ 36.7)</td>
<td>CA-2</td>
</tr>
<tr>
<td>第二步</td>
<td>CA-2</td>
<td>34.3 (22.9 ~ 47.9)</td>
<td>0.55 (P) = 0.06</td>
</tr>
<tr>
<td>第二步</td>
<td>CA-3</td>
<td>38.1 (26.1 ~ 51.8)</td>
<td>0.30</td>
</tr>
<tr>
<td>第三步</td>
<td>全体</td>
<td>21.5 (13.7 ~ 32.0)</td>
<td>PGY-1</td>
</tr>
<tr>
<td>第三步</td>
<td>PGY-1</td>
<td>13.9 (5.3 ~ 31.6)</td>
<td>CA-1</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-1</td>
<td>25.1 (15.5 ~ 38.0)</td>
<td>CA-2</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-2</td>
<td>23.4 (14.5 ~ 35.4)</td>
<td>0.22 (P) = 0.74</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-3</td>
<td>25.3 (15.7 ~ 38.3)</td>
<td>0.15</td>
</tr>
<tr>
<td>第三步</td>
<td>全体</td>
<td>36.2 (27.2 ~ 46.4)</td>
<td>PGY-1</td>
</tr>
<tr>
<td>第三步</td>
<td>PGY-1</td>
<td>30.9 (16.8 ~ 49.8)</td>
<td>CA-1</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-1</td>
<td>34.6 (24.1 ~ 46.8)</td>
<td>CA-2</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-2</td>
<td>36.6 (25.9 ~ 48.8)</td>
<td>0.54 (P) = 0.74</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-3</td>
<td>43.2 (31.8 ~ 55.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>第三步</td>
<td>全体</td>
<td>27.8 (18.8 ~ 39.0)</td>
<td>PGY-1</td>
</tr>
<tr>
<td>第三步</td>
<td>PGY-1</td>
<td>18.6 (8.6 ~ 35.6)</td>
<td>CA-1</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-1</td>
<td>30.4 (19.9 ~ 43.4)</td>
<td>CA-2</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-2</td>
<td>33.6 (22.5 ~ 46.8)</td>
<td>0.06 (P) = 0.57</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-3</td>
<td>30.3 (19.6 ~ 43.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>第三步</td>
<td>全体</td>
<td>19.4 (12.6 ~ 28.8)</td>
<td>PGY-1</td>
</tr>
<tr>
<td>第三步</td>
<td>PGY-1</td>
<td>7.9 (2.9 ~ 20.1)</td>
<td>CA-1</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-1</td>
<td>20.9 (12.9 ~ 32.2)</td>
<td>0.034</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-2</td>
<td>23.8 (15.2 ~ 35.3)</td>
<td>0.015 (P) = 0.56</td>
</tr>
<tr>
<td>第三步</td>
<td>CA-3</td>
<td>32.2 (21.5 ~ 45.1)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

注：某一年级住院医师给出与 ACC/AHA 指南大部分推荐建议一致的人数百分比。\(P \) 值代表在某一种场景下两组住院医师之间得分存在差异。所有百分比按研究方案和调查设计效果进行调整。配对比较各培训年级医师正确回答的百分比和 95% 可信区间，以 \(P \) 值表示。第一列是表 1 所示 ACC/AHA 流程图的示意图。黑色盒子代表每种场景的终点，除了场景 6，后者为其自身的终点。

PGY-1 = 毕业后一般医学培训计划一年；CA-1 = 临床麻醉培训一年；CA-2 = 临床麻醉培训二年；CA-3 = 临床麻醉培训三年。

第一步指“需要急诊非心脏手术”。该步不包括在我们设计的 6 种场景中。第二步的重点是患者是否有“活动性心脏病”。如果有，正确的推荐建议是“按 ACC/AHA 的指南进行评估和治疗”。第三步关注“无风险手术”。如果患者被安排实施低风险手术（并且无活动性心脏病），则推荐建议是“进行计划手术”。如果患者无活动性心脏病且被安排中等风险或血管手术，第四步指示，如果患者功能储备良好，也应“进行计划手术”。剩下的第五步涉及血管手术或中等风险手术。如果患者有 1 个或 2 个临床危险因素（场景 4 和 5），则推荐建议是“控制心率的前提下进行计划手术或若要改变治疗策略则考虑无创性检测”。如果患者功能储备差（即代谢当量 < 4 或不明），且无临床危险因素，则推荐建议是“进行计划手术”
本研究存在局限性。由于住院医师具有自主选择的权利，参与者可能因过分自信自己能力而曲解指南的运用。尽管我们应用了地区随机化的方法选择住院医师，但是由于以下 2 个原因，我们另外征求志愿者：①增加参加者数量；②保证参与者的匿名性。我们担心如果限制潜在的募集样本，将无法获得足够的参加者数量。使用随机选择的方法意味着需要事先验证一组住院医师的身份或在住院医师注册后决定其是否被选入测试。前一种方法将确认哪些住院医师不是参与者。这将使参与的住院医师身份较易被确定，因此一些 IRB 并不赞成这种随机方法。最后，我们认为本研究对住院医师而言在某种程度上是一个教育活动。我们的观点是：如果一名住院医师希望参与，那么我们将给他提供这个机会。

总之，麻醉学住院医师（全美所有受训人员中占 12%）对临床常见场景的模拟患者并不准确地应用该指南进行评估。我们估计在全美国范围内能准确实施标准术式心脏评估的麻醉学住院医师不足一半。有必要进一步研究分析与这些指南相关的有用决策支持工具和参加实践模式。

附录 1：场景描述

场景描述如下。当场景呈现给住院医师时，不显示其编号和描述。

尽管可能的推荐建议的顺序按随机排列，但是为了显示方便，所有场景的正确推荐建议均是 #1。

场景 1：活动性心脏病

A. 男性，74 岁，一侧下肢跛行，曾有 2 型糖尿病史并接受胰岛素治疗，有慢性肾功能不全（Cr = 2.1 mg/dl），拟行血管修复术。患者诉近期有胸痛伴上楼至卧室时气促。

B. 女性，68 岁，进食后腹痛，有高血压史和慢性肾功能不全（Cr = 2.1 mg/dl），拟行胆囊切除术。术前评估时，自诉最近做家务时更易感到疲劳，昨晚和丈夫争论时有胸部压迫感。

C. 女性，62 岁，有高血压史，椎管狭窄伴进行性背痛，拟行椎管切除术。自诉近一个月内“感觉疲劳和虚弱”，有心绞痛病史，近几月有所加重。

最佳推荐建议：
1. 术前患者应该行负荷试验（多巴酚丁胺负荷超声心动图、运动负荷试验或核成像应力测试）
2. 患者需要行心导管检查术后再全面评估
3. 如当天 ECG 与 6 个月前无改变，可实施手术
4. 开始给予 β 受体阻断药，实施计划手术
5. 实施计划手术

场景 2：无活动性心脏病，低风险手术

A. 非洲裔美国女性，62 岁，有高血压病史、糖尿病史且血糖控制不佳以及濒状细胞特征。拟行键修复术。血糖水平 120～240mg/dl。桃日步行上班
心率（heart rate，HR）84 次/分，血压 （blood pressure，BP）151/84mmHg。

B. 西班牙裔女性，65 岁，有高血压病史、糖尿病史且血糖控制不佳以及骨关节炎病史。拟行诊断性腹腔镜检查术。血糖 100～250mg/dl。桃日在公园正常工作。HR 82 次/分，BP 143/92mmHg。

C. 中国籍男性，60 岁，吸烟，有糖尿病史且血糖控制不佳，并有高胆固醇血症病史。拟行切口疤痕修补术。自诉能上 2 层楼。血糖 130～290mg/dl。HR 82 次/分，BP 138/90mmHg。

最佳推荐建议：
1. 实施计划手术
2. 负荷试验（多巴酚丁胺负荷超声心动图、运动负荷试验或核成像应力测试）
3. 开始预防阿替洛尔疗法，在充分控制心率后再行手术
4. 申请血红蛋白 A1c 检查以评价糖尿病控制情况
5. 需要行 ECG 后再做推荐建议

场景 3：无活动性心脏病，中等风险手术，功能储备良好，1 个临床危险因素

A. 拉丁裔男性，65 岁，有吸烟史，20 支/日。10 周前心肌梗死（myocardial infarction，MI）后进行心包复，目前已有恢复到他的爱好—跳桑巴舞，每周 2 次。7 个月前因肺炎住院，并行输血吸氧 4 天。患者因严重骨关节炎拟行全膝关节置换术，需要你进行术前评估。

B. 白人男性，74 岁，吸烟史 1000 年支，长期有憩室炎。2 月前出现 MI 后行心脏康复，目前每日能在跑步机上以 4 英里/小时的速度行走 15 分钟。现拟行结肠切除术，需要你对其进行术前评估。

C. 非洲裔美国女性，72 岁，吸烟史 20 支/日。2 个月前发生 MI 后行心脏康复，现每日能连续游泳 20 分钟。因严重椎管狭窄拟行椎板切除术，需要你
进行术前评估。

最佳推荐建议：
1. 实施计划手术
2. 患者术前应该行负荷试验（多巴酚丁胺负荷超声心动图、运动负荷试验功能性成像应激测试）
3. MI 后应该延迟外科手术至少 3 个月
4. MI 后应该延迟外科手术至少 6 个月
5. 需要行 ECG 及肺功能试验后再进行评估

场景 4：无活动性心脏病，中等风险手术，功能储备差或不明，2 个临床危险因素

A. 男性，72 岁，长期患有 2 型糖尿病，并导致视网膜病与肾脏病，能自行穿衣及刷牙，但行动不便。术前肌酐 2.3 mg/dl。最近确诊为结肠癌。你正在为其接受结肠切除术做术前评估。HR82 次/分。

B. 女性，77 岁，有 M1 史（超过 5 年）。术前肌酐 2.6 mg/dl，能平地步行上 1～2 个街区。现因肾细胞癌拟行肾脏切除术，你正在进行术前评估。HR82 次/分。

C. 男性，65 岁，2 型糖尿病史，功能储备极度不佳，术前肌酐 2.6 mg/dl，能自行洗澡及更衣。拟行腹部肿瘤切除术，你正在为该患者进行术前评估。HR82 次/分。

最佳推荐建议：
1. 只要阳性负荷试验不改变围术期治疗方案，实施手术
2. 开始给予 β 受体阻断药，完全控制心率后再行手术
3. 患者应该行二维超声心动图
4. 行 ECG 后再作评估
5. 负荷试验是能否手术的绝对指征

场景 5：无活动性心脏病，血管手术，1 个或 2 个临床危险因素

A. 男性，64 岁，吸烟史和中风史，因下肢疼痛进行性加重而拟行股动脉瘤修复术。BP172/83 mm Hg。

B. 女性，68 岁，高血压史，数年前有两次短暂性脑缺血发作，最近一次在 18 个月前。拟行腹主动脉股动脉分流术。BP168/85 mm Hg。

C. 男性，78 岁，有高血压史，2 型糖尿病史以及周围性血管疾病导致的跛行，并伴有腹部肿瘤。腹部 CT 显示 5.6 cm 的腹主动脉瘤。BP158/80 mm Hg。

最佳的推荐建议：
1. 只要阳性负荷试验不改变围术期治疗方案，实施手术
2. 需行 ECG 后再评估
3. 延迟手术，直至 BP <140/70 mm Hg
4. 请心脏专家会诊

附录 2：广义线性混合模型

线性混合模型包括两组不同的变量：固定变量和随机变量。在同一机构的不同受试者之间、机构、训练年资和日期是固定影响因素，而一般认为在个体内部场景和其他调查设计的影响是固定影响因素。该模型的随机部分是与离个体内部影响因素的误差项。通常情况下，误差项可以是由受试者因素间机构 x 年级相互作用，也可以是受试者内部因素的机构 x 年级中的场景 x 个体；然而，机构 x 年级的相互作用具有空项而无法确定。所以，本分析中采用的误差项是由于机构内受试者间的因素，机构内受试者内部因素为场景 x 受试者。本分析采用了 24 个 6 x 6 分块的分块对角协方差矩阵；每个机构使用一个分块呈现 24 个结构中每个机构的成簇受
试者，6×6 的无结构协方差矩阵显示一位受试者在 6 个场景中的反应。

在分析中的独立变量就是每个场景的得分，错误为 0，正确为 1。因此，该独立变量具有二进制分布性，需要使用广义线性混合模型来进行逻辑回归。

培训年龄与场景是模型中重要的独立变量。因为我们需要使用年龄来解释每个场景中的数据，我们也按入了年龄×场景的一级相互作用。该模型中的协变量包括机构和调查设计影响，以去除其干扰，从而可在处理加工后整体评价结果。协变量包括机构和场景变量的设计影响、场景出现次序、反应时间、尝试次数以及从研究开始的天数。早期模型中包括了调查设计影响与场景间的一级相互作用，并且当该作用在 P 值 0.05 水平而不具备显著性时，我们将随后的运行中删除，以简化模型。最终的估计模型是:

$$\text{分数} = \text{机构} + \text{年龄} + \text{天数} + \text{场景} + (\text{年龄} \times \text{场景}) + \text{变量} (\text{场景}) + \text{次序} + (\text{次序} \times \text{场景}) + \text{尝试次数} (\text{场景}) + \text{时间} (\text{场景})$$

其中在括号中的变量代表了嵌套的变量：变量 (场景) 则代表在场景中的嵌套变量。需注意的是受试者因素之间的误差项是 ID (机构)，而受试者因素内部的误差项是场景 × ID (机构)。误差项并不包括在模型中，但是作为随机影响普遍存在于混合线性模型的随机部分中。

附录 3：正确百分比的计算

为了归纳出机构和设计影响的正确百分比数和 95% 可信区间，必需通过平均机构与调查的影响来调整百分比数。以下概述计算正确的百分比数和 95% 可信区间的步骤并举例来说明该过程。

第 1 步

生成回归参数的线性组合，包括机构影响和去除这些影响的平均值。矩阵方程由 \(L \beta \) 构成，其中 \(L \) 是矩阵的回归系数，\(\beta \) 为回归系数估计值的向量。通过 \(\text{Lcov}(\beta) \) 斜率方根来计算矩阵中该线性组合的标准误差 (SE)，其中 \(L \) 是用来计算此线性组合的回归系数矩阵，\(\text{cov}(\beta) \) 是估计回归参数的协方差矩阵。用于本研究的逻辑回归中，第一步计算了对数优势 (log-odds) 和其 SE: \(\text{ln}[p/(1-p)] = \pm \text{SE} \)，其中 \(p \) 是指成功的部分 (即选择正确推荐建议)，SE 是对数优势的标准误。

第 2 步

指数化对数优势从而得优势 (odds)，并计算该优势的 95% 可信区间: 优势 = \(\text{exp} \{\ln[p/(1-p)]\} = p/(1-p) \)，95% 可信区间 CI = \(\text{exp} \{\ln[p/(1-p)] \pm t_{a/2, SE} (\text{SE})\} \)。

第 3 步

用代数方法处理优势和 95% 可信区间以获得正确的百分比数和其 95% 可信区间：正确百分比数 = 100[优势/(1 + 优势)]，95% 可信区间 = 100[优势的 95% 可信区间/(1 + 优势的 95% 可信区间)]。

举例

正确的百分比数和 95% 可信区间的算法呈现在表 2 中，其包括一个 24×138 的 \(L \) 矩阵，一个 138 列的 \(\beta \) 向量和一个 138×138 的 \(\text{cov}(\beta) \) 矩阵。如用于举例将过于复杂，所以我们应用 2 所机构，两个训练年级、2 种场景和 2 个场景变量构成的较小模型来阐明算法。值得注意的是表格中的数据由 SAS 软件计算得出，以下表格在第 2 步和第 3 步的计算结果可能因舍入误差稍有不同。

<table>
<thead>
<tr>
<th>L 矩阵为:</th>
<th>机构</th>
<th>年级</th>
<th>场景</th>
<th>年级×场景</th>
<th>变量(场景)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(odds)</td>
<td>裁距</td>
<td>5</td>
<td>8</td>
<td>CA-1</td>
<td>CA-2</td>
</tr>
<tr>
<td>CA-1 场景 2</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CA-1 场景 4</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CA-1 场景 2</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CA-1 场景 4</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
回归参数估计值的系数 β 为：

<table>
<thead>
<tr>
<th>影响</th>
<th>年级</th>
<th>变量</th>
<th>机构</th>
<th>场景</th>
<th>估计值</th>
</tr>
</thead>
<tbody>
<tr>
<td>截距</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.91</td>
</tr>
<tr>
<td>机构</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>-0.64</td>
</tr>
<tr>
<td>机构</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>年级</td>
<td>CA-1</td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>年级</td>
<td>CA-2</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>场景</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>-0.34</td>
</tr>
<tr>
<td>场景</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-1</td>
<td>2</td>
<td></td>
<td></td>
<td>2.11</td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-1</td>
<td>4</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-2</td>
<td>2</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-2</td>
<td>4</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>变量(场景)</td>
<td>A</td>
<td>2</td>
<td></td>
<td></td>
<td>1.09</td>
</tr>
<tr>
<td>变量(场景)</td>
<td>B</td>
<td>2</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>变量(场景)</td>
<td>A</td>
<td>4</td>
<td></td>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>变量(场景)</td>
<td>B</td>
<td>4</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

回归参数估计值的协方差矩阵的 COV(β) 矩阵为：

<table>
<thead>
<tr>
<th>影响因素</th>
<th>年级</th>
<th>变量</th>
<th>程序</th>
<th>场景</th>
<th>列 1</th>
<th>列 2</th>
<th>列 3</th>
<th>列 4</th>
<th>列 5</th>
<th>列 6</th>
<th>列 7</th>
<th>列 8</th>
<th>列 9</th>
<th>列 10</th>
<th>列 11</th>
<th>列 12</th>
<th>列 13</th>
<th>列 14</th>
<th>列 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>截距</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2.68</td>
<td>-1.4</td>
<td>-1.6</td>
<td>-1.7</td>
<td>1.21</td>
<td></td>
<td>0.53</td>
<td></td>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>机构</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>-1.4</td>
<td>2.55</td>
<td>-0.2</td>
<td>0.37</td>
<td>0.24</td>
<td></td>
<td>-1.1</td>
<td></td>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>机构</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>年级</td>
<td>CA-1</td>
<td>4</td>
<td></td>
<td></td>
<td>-1.6</td>
<td>-0.2</td>
<td>3.82</td>
<td>1.4</td>
<td></td>
<td>-2.9</td>
<td></td>
<td></td>
<td>-0.1</td>
<td></td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年级</td>
<td>CA-2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>场景</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td>-1.7</td>
<td>0.37</td>
<td>1.4</td>
<td>3.52</td>
<td></td>
<td>-2.4</td>
<td></td>
<td></td>
<td>-1.6</td>
<td></td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>场景</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-1</td>
<td>2</td>
<td>8</td>
<td></td>
<td>1.21</td>
<td>0.24</td>
<td>-2.9</td>
<td>-2.4</td>
<td></td>
<td>5.2</td>
<td></td>
<td></td>
<td>-0.6</td>
<td></td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-1</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-2</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>年级×场景</td>
<td>CA-2</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>变量(场景)</td>
<td>A</td>
<td>2</td>
<td>12</td>
<td></td>
<td>0.53</td>
<td>-1.1</td>
<td>-0.1</td>
<td>-1.6</td>
<td></td>
<td>-0.6</td>
<td></td>
<td>3.56</td>
<td></td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>变量(场景)</td>
<td>B</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>变量(场景)</td>
<td>A</td>
<td>4</td>
<td>14</td>
<td></td>
<td>-0.4</td>
<td>-0.2</td>
<td>-1.3</td>
<td>0.22</td>
<td></td>
<td>1.11</td>
<td></td>
<td>0.55</td>
<td></td>
<td>4.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>变量(场景)</td>
<td>B</td>
<td>4</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
第1步
Lβ矢量:

<table>
<thead>
<tr>
<th>年级</th>
<th>场景</th>
<th>优势比</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-1</td>
<td>2</td>
<td>0.99</td>
</tr>
<tr>
<td>CA-1</td>
<td>4</td>
<td>-1.01</td>
</tr>
<tr>
<td>CA-2</td>
<td>2</td>
<td>-2.01</td>
</tr>
<tr>
<td>CA-2</td>
<td>4</td>
<td>-1.91</td>
</tr>
</tbody>
</table>

lcv(β) L′矩阵的斜率平方根:

<table>
<thead>
<tr>
<th>年级</th>
<th>场景</th>
<th>标准误</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-1</td>
<td>2</td>
<td>1.20</td>
</tr>
<tr>
<td>CA-1</td>
<td>4</td>
<td>1.30</td>
</tr>
<tr>
<td>CA-2</td>
<td>2</td>
<td>1.33</td>
</tr>
<tr>
<td>CA-2</td>
<td>4</td>
<td>1.62</td>
</tr>
</tbody>
</table>

第2步
优势和95%可信区间:

<table>
<thead>
<tr>
<th>年级</th>
<th>场景</th>
<th>优势</th>
<th>95% 可信区间</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>下限</td>
</tr>
<tr>
<td>CA-1</td>
<td>2</td>
<td>2.68</td>
<td>0.19</td>
</tr>
<tr>
<td>CA-1</td>
<td>4</td>
<td>0.36</td>
<td>0.02</td>
</tr>
<tr>
<td>CA-2</td>
<td>2</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>CA-1</td>
<td>4</td>
<td>0.15</td>
<td>0.00</td>
</tr>
</tbody>
</table>

注：CA-1 错误率 = exp (0.99) = 2.69；95% 可信区间 = exp [0.99 ± 2.20(1.20)] = 0.17，37.71；t_{0.05;11} = 2.20

第3步
百分比数和95%可信区间:

<table>
<thead>
<tr>
<th>年级</th>
<th>场景</th>
<th>正确率</th>
<th>95% 可信区间</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>下限</td>
</tr>
<tr>
<td>CA-1</td>
<td>2</td>
<td>72.9</td>
<td>16.1</td>
</tr>
<tr>
<td>CA-1</td>
<td>4</td>
<td>26.7</td>
<td>2.1</td>
</tr>
<tr>
<td>CA-2</td>
<td>2</td>
<td>11.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CA-1</td>
<td>4</td>
<td>12.9</td>
<td>0.4</td>
</tr>
</tbody>
</table>

注：CA-1 正确率 = 100 [2.68/(1 + 2.68)] = 72.8；CA-1 95%可信区间下限 = 100[0.19/(1 + 0.19)] = 16.0；
CA-1 95%可信区间下限 = 100[37.50/(1 + 37.50)] = 97.4

附录4：合作者

网站管理员 (研究的实施)
Shawn Beaman MD, (UPMC), Sergio Bergese, MD (Ohio State), Ben Boedeker, MD (Nebraska), Matthew Caldwell, MD (Michigan), Stevin Dubin, MD (Medical College of Georgia), Sunil Eappen, MD (Mass Eye and Ear Infirmary), Angela Edwards, MD (Wake Forest University), Jesse Ehrenfeld, MD, MPH (Massachusetts General Hospital), David Feinstein, MD (Beth Israel-Boston), Robert Gaiser, MD (University of Pennsylvania), Jeffrey Green, MD (Virginia Commonwealth University), Amir Jaffer, MD (University of Miami), Praveen Kalra, MD (University of Oklahoma), Suzanne Karan, MD (University of Rochester School of Medicine and Dentistry), Paul Kraner, MD (University of Wisconsin), Gary Loyd, MD (University of Louisville), Ronald Olson, MD (Duke University), Michael Pilla, MD (Vanderbilt University), Deborah Richman, MBChB, FFA (SA) (Stony Brook), James Rowbottom, MD (University Hospitals—Cleveland), Kip Robinson, MD (University of Tennessee), Gail Van Norman, MD (University of Washington), Marsha Wakefield, MD (University of Alabama-Birmingham).

内容公开

姓名：Michael M. Vigoda, MD, MBA.
贡献：研究设计、数据分析、研究实施和准备稿件
姓名：BobbieJean Sweitzer, MD.
贡献：研究设计、数据分析、研究实施和准备稿件
姓名：Nikola Miljkovic.
贡献：研究设计和研究实施
姓名：Kristopher L. Arheart, EdD.
贡献：数据分析和准备稿件
姓名：Shari Messinger, PhD.
贡献：数据分析和准备稿件
姓名：Keith Candiotto, MD.
贡献：研究设计、数据分析、研究实施和准备稿件
姓名：David Lubarsky, MD, MBA.
贡献：研究设计、数据分析、研究实施和准备稿件
鸣 谢

感谢 Dr. Lee Fleisher 审阅了每个场景的描述（以及该系列的推荐建议），当完成该研究后住院医师们可在视频中看到他的参与。也感谢 Sophie 和 Joan Leonard 的支持以及 Dr. Vicente Behrens 协助编制表格。

（赵燕君 译 邓小明 校）
（本文编辑 罗艳 李虹）

参考文献

3. Auerbach AD, Goldman L. Beta-blockers and reduction of cardiac events in noncardiac surgery: scientific review. JAMA 2002;287:1435–44.