吗啡对人 5-HT_{3A} 受体的作用

Maria Wittmann, MD, I. Peters, MS, T. Schaaf, MS, H. C. Wartenberg, MD, S. Wirz, MD, J. Nadstawek, MD, B. W. Urban, PhD, M. Barann, PhD

Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätskliniken Bonn, Bonn, Germany

摘要 5-HT₃受体是一种参与呕吐及疼痛调节的配基-门控离子通道。在本研究中，我们观察了阿片类镇痛药物吗啡是否对主要 5-HT₃受体发挥特异性作用。采用由人 5-HT_{3A} 受体 cDNA 稳定转染的 HEK293 细胞，应用全细胞膜片钳技术来测定吗啡对 5-羟色胺 (5-HT)诱导的电流产生的影响。在负膜电位下，5-HT 以浓度依赖性方式诱导出内向电流。5-HT₃受体拮抗剂恩丹西酮 (ondansetron, 0.3 nM) 可逆性抑制了 5-HT 诱导的信号。吗啡依其浓度的函数关系 (IC₅₀ = 1.1 μM, Hill 系数 = 1.2) 可逆性抑制了 5-HT 诱导的峰电流。吗啡的阻断作用随 5-HT 浓度的升高而减弱，提示此为竞争性效应。此外，电流的活化、失活化和动力学在吗啡存在的情况下显著减弱。吗啡拮抗剂纳洛酮也抑制了 5-HT 诱导的电流 (例如在 3 μM 的情况下减少了 17%)。但吗啡和纳洛酮的作用并不叠加。吗啡的效力和竞争性阻断作用提示是对受体的特异性作用机制而不是胞膜的非特异性作用。

Abstract 5-HT₃ receptors are ligand-gated ion channels that are involved in the modulation of emesis and pain. In this study, we investigated whether the opioid analgesic, morphine, exerts specific effects on human 5-HT₃ receptors. Whole-cell patches from HEK-293 cells stably transfected with the human 5-HT_{3A} receptor cDNA were used to determine the effects of morphine on the 5-HT-induced currents using the patch clamp technique. At negative membrane potentials, 5-HT induced inward currents in a concentration-dependent manner. The 5-HT₃ receptor antagonist, ondansetron, (0.3 nM) reversibly inhibited the 5-HT-induced signals. Morphine reversibly suppressed 5-HT-induced peak currents as a function of concentration (IC₅₀ = 1.1 μM, Hill coefficient = 1.2). The block by morphine decreased with increasing 5-HT concentrations, suggesting a competitive effect. In addition, the activation, as well as the inactivation, kinetics of the currents were significantly slowed in the presence of morphine. The morphine antagonist, naloxone, also inhibited 5-HT-induced currents (e.g., at 3 μM by 17%). The effects of morphine and naloxone were not additive. The potency of morphine and the competitiveness of the blocking effect points to a specific mechanism at a receptor site rather than an unspecific membrane effect.

(Anesth Analg 2006; 103: 747–52)

5-HT₃ 受体直接或间接的与几种生理和病理过程相关，包括胃肠运动、内脏痛及恶性、呕吐^[8]。

脑最后区的 5-HT₃ 受体与呕吐密切相关，而 5-HT₃ 受体拮抗剂如恩丹西酮 (ondansetron) 在临床上被用作治疗治疗和全麻相关的呕吐^[9]。很多药物除了原本受体的作用之外还对 5-HT₃ 受体有影响，如
大麻 [10] 也作用于 5-HT₃ 受体，进而提示这些作用与"抗体"正常有联系，并有效镇痛和止吐。

最近，吗啡被证明对大鼠的 5-HT₃ 受体有特异竞争性的拮抗作用 [11]。因此，本研究旨在观察吗啡是否也对人体 5-HT₃ 受体具有特异性作用，并阐明其特征以及其对人和大鼠 5-HT₃ 受体的作用是否有差别。

方 法

将 HEK293 细胞在含有 10% 热失活胎牛血清、青霉素 (100 U/ml)、链霉素 (100 μg/ml)、geneticin (0.75 μg/ml) 和谷氨酰胺 (292 μg/ml) 的 DMEM Nutrient Mix F12 (1:1; v-v) 培养基上做单层培养。细胞在 37°C、含 5% CO₂ 的湿条件条件下培养。将电生理实验用的细胞转移到 35 mm 的 Petri 盘 (NUNC) 中。这些细胞将在转移后 2～6 天，在细胞层融合前使用。

为了达到稳定的转染，将人 5-HT₃α 受体的 cDNA 亚克隆通过哺乳动物表达型载体 pcDNA3 (Invitrogen，Kalsruhe，Germany) 以修饰磷酸钙的方式在人巨细胞病毒启动子控制下转染到 20% 融合的 HEK293 细胞中。转染 2 天后，往细胞培养基中加入 geneticine (800 μg/ml) 进行细胞选择。培养液每 2 天更换 1 次。出现单细胞克隆后，用克隆圆柱 (Sigma-Aldrich，Munich，Germany) 将单细胞克隆分离出来，然后转移到 24 孔培养基 (Falcon，BD Biosciences，Heidelberg，Germany) 中进一步培养直至融合。在每个转染实验中，测试约 20～40 个克隆 (通过 5-HT 诱导 [³⁵ 2] 标记的膜内流并与选择性 5-HT₃ 受体拮抗剂 [H] 标记的 GR65360 结合) 以确定稳定表达特异的 cDNA。受体表达最高的克隆用于进一步的实验。尽管大部分生理学 5-HT₃α 受体并不是专门由这一亚单位构成的，但同一五聚体的 5-HT₃α 受体由于其同源性组成，因此很适合用作机制的研究。

采用膜片钳技术检测 5-HT₃ 受体的电流。膜片钳放大器 (EPC-7; List Electronic，Darmstadt，Germany) 使用的输出滤过设定在 65～500 Hz 间 (频率率 125～1000 Hz) 并采用膜片钳软件 (Axon Instruments，Foster City，CA，U.S.A.) 进行处理。在全细胞标准电压钳试验中，于 -30 mV 或 -60 mV 的条件下给予 5-HT (3 μM) 60 秒，利用放大器线路内在补偿来测量及补偿瞬间容量及串联电阻。串联电阻补偿最高可达 70%。

空白对照反应使用 3 μM 5-HT 之前和之后都进行检测。为了排除衰减现象，以两次给药测得的值求出平均值。每个电流测量 3 次取平均值以减少干扰效应。冲洗时间至少 90 秒以利于受体从失敏状态下恢复过来。

通过靠近细胞的灌流管给药。用“吸管开口”试验来监测溶液的交换速率。所用的细胞外液成分 (mM): NaCl 150，KCl 5.6，CaCl₂ 1.8，MgCl₂ 1.0，HEPES 10，pH 7.4。电极的电阻为 1.5～3 MΩ，细胞内液的成分为 (mM): KCl 140，EGTA 10，MgCl₂ 5，HEPES 10，pH 调至 7.4。为使药物与合成材料相互作用后的损耗降到最低，药物溶液被放置在玻璃储液器中并使用特富龙管。在室温 (21 ± 1°C) 下进行记录。

采用 Digidata 1200 对电流进行数字化处理 (Axon Instruments，Molecular Devices Corporation) 并存储到 IBM 586 兼容 PC 机中。数据分析采用 pClamp 6/8 软件 (Axon Instruments) 完成。使用 GraphPad Prism 3.03 软件 (GraphPad，San Diego，CA) 作图。5-HT 的浓度-效应曲线及吗啡作用近似符合 Hill 方程式:

\[i = \frac{c^n}{(c^n + EC_{50}^n)} \]

i：作为最大 (对照) 电流分数的即时峰电流；c：5-HT 浓度；n：Hill 系数；EC₅₀：5-HT 诱导出 50% 最大效应时的浓度。

为了计算 5-HT₃α 受体的 K₅₀ 值，在给和不给吗啡 (1 μM) 时 5-HT 的 EC₅₀ 值运用 Schild 方程式求得 (在拮抗剂存在时的 EC₅₀/EC₅₀)=1 = 拮抗剂浓度/K₅₀。激动剂诱导的激活及失活 f (t) 时程同时符合分开使用的单指数函数和共同使用的双指数函数 (根据 pClamp 6/8，Axon Instruments):

\[f(t) = a_0 + a_1 e^{-t / \tau_1} \]

或

\[f(t) = a_0 + a_1 e^{-t / \tau_1} + a_2 e^{-t / \tau_2} \]

5-羟色胺 (硫酸肌酸酐) 购自 Sigma (München，Germany)。吗啡 (硫酸) 购自 Mundipharma，(Limburg，Germany)，纳洛酮 (盐酸) 购自 Ratiopharm (Ulm，Germany)。使用储备液配制每日的药物溶液 (10～50 μM)。
结果

在负的膜电位，对 HEK293 单细胞给予的 5-HT 通过浓度依赖的方式诱导出内向电流（图 1A）。在 -30 mV 时，我们观察到在全细胞状态下膜片的电流幅度介于 500 至 5000 pA 之间。人在 5-HT3A 受体的特异性拮抗剂恩丹西酮 0.3 nM，在激活受体前以及激活受体过程中使用，可逆性地抑制了 5-HT 3 μM 诱导的电流峰值（图 2A）。5-HT 浓度效应曲线经测量符合 Hill 方程式，其 EC50 值为 2 μM，Hill 系数为 2.2（图 1B）。

图 1 表达人 5-HT3A 受体的单 HEK293 细胞对 5-HT 的电生理反应。A: 从单个细胞记录的对标准全细胞电压不同浓度 5-羟色胺 (-30 mV) 产生的电流。B: 在全细胞膜片中 5-羟色胺活化人 5-HT3A 受体 (均值 ± 标准误，从 4 至 7 个细胞) 表现出的浓度 - 效应曲线（符合 Hill 方程）。

吗啡以浓度依赖且可逆性的方式抑制了 5-HT 3 μM （≈ EC50）诱导的峰电流（图 2B），其 IC50 为 1.1 μM，Hill 系数为 1.2（图 2C）。在这些实验中，阿片

图 2 吗啡对 5-HT 3 μM 诱导的峰电流的抑制（全细胞模型，-30 mV）。在 5-HT 刺激前及过程中，药物持续使用 90 秒。A: 记录的电流显示加入 0.3 nM 的恩丹西酮抑制了峰电流。B: 记录的电流显示加入 1 μM 的吗啡抑制了峰电流的激活和失活的

类药物在 5-HT 刺激物（同等剂量）加入前 1 分钟及加入后整个过程中持续存在。除了抑制峰电流外，吗啡还通过浓度依赖的方式减慢电流的激活和失活的时间常数。1 μM 吗啡将活性时间常数 (τon) 增加至 2.3 倍，失活时间常数 (τoff) 增加至 2.6 倍（图 3；Student’s t 对 t 检验，P < 0.05）。当吗啡浓度大于 1 μM 时，由于在 5-HT 刺激下及吗啡应用后的 10 秒内活化仍不
能完成，因此失活时间常数不能确定。吗啡 (0.1 ~ 10 μM)单独应用并不引起对 5-HT 敏感的膜片产生任何电流。

![图3](image)

图 3 吗啡减慢电流动力学 (3 μM 5-HT，全细胞，-30 mV，符合双指数，均值 ± 标准误)。A: 浓度依赖 (符合单指数) 活化电流的减慢 (τ_{am}, n=2 ~ 7)。B: 1 μM 吗啡显著减慢电流活化 (τ_{am}) (n=8，Student's 配对 t 检验，P=0.066)。C: 1 μM 吗啡显著减慢电流失活 (τ_{de}) (n=5 ~ 18，Student's 非配对 t 检验，P=0.043)

将 5-HT 浓度由 1 μM 增加至 100 μM 后，吗啡的作用减弱，1 μM 吗啡的浓度-效应曲线右移 (图 4 和 5)。将给或不给 1 μM 吗啡时的 5-HT 的 EC_{50} 值 (分别为 3.2 和 1.97 μM) 代入 Schild 方程式，计算出吗啡的 K_{B} 值为 1.6 μM，这个值与 IC_{50} 值 (1.1 μM) 很接近。另外，吗啡减缓电流动力学的作用在提高 5-HT 的浓度后被减弱。

![图4](image)

图 4 在 1 μM 吗啡存在 (空心符号) 及不存在 (实心符号) 下 5-HT 的浓度-效应曲线 (全细胞模型，-30 mV，均值 ± 标准误，n=3 ~ 8; P<0.001)。1 μM 吗啡诱导了 5-HT 浓度-效应曲线的右移

在 3 μM 5-HT 给药前 1 分钟及给药同时给予阿片受体拮抗剂纳洛酮 (3 μM) 可以使峰电流下降 17% (P<0.01)。然而，当纳洛酮与吗啡一起给药时，纳洛酮 (3 μM) 并没有增加反而轻度削减了之前描述的吗啡的显著抑制作用 (图 5)。

讨 论

本研究探讨了在临床使用浓度下，吗啡对人体 5-HT_{3A} 受体是否具有特异性的作用。为了确保全细胞的制备可以有效用于实验，我们测量了全细胞状态下的 5-HT 浓度-效应曲线，并将我们的结果与已有的全细胞钙研究结果 [2] 进行比较。这里得出的 5-HT EC_{50} 值与先前全细胞测量出的结论是一致的 [11]。特异性 5-HT_{3} 抑制剂恩丹西酮在纳摩尔浓度水平抑制了 5-HT 引起的电流。这说明了测量出的电流是由 5-HT_{3} 受体特异性介导的 (图 2B)。

吗啡对 5-HT 诱导的电流 (IC_{50} = 1.1 μM) 浓度依赖性的抑制作用至少部分包括了特异性和竞争性的机制。首先，当激动剂浓度增加后，抑制是减弱的，这提示吗啡与 5-HT 间存在竞争性。同时我们观察
到增强（见图2B的轨迹）。这个长期持续的增强作用可能与吗啡的催吐反应有关。假设抑制5-HT3受体有止吐的作用，那么加强5-HT3受体则可以催吐。这些结果起初令人惊讶，但有报道临床上吗啡兼有催吐和止吐的作用[14]。例如有研究表明给狗使用甲基钠曲酮后，阻断了吗啡的外周催吐作用，而使吗啡的中枢止吐作用表现出来[15]。因而，我们假设外周催吐作用可能通过阿片受体起作用，但在中枢神经系统吗啡对5-HT3受体的抑制可能产生了止吐的作用。临床上观察到的吗啡的催吐作用可能与吗啡对阿片受体比对5-HT3受体的作用更大有关。

与静脉给药后脑脊液中发现的药物浓度和硬膜外或鞘内给药后发现的浓度（4~10 μM）[16]相反，本研究中几乎完全抑制5-HT3受体的吗啡浓度（≈10 μM）是有限度意义的。因此如果假设5-HT3受体已经完全被蛛网膜注射的吗啡阻断后，另外再给予5-HT3受体拮抗剂可能并不能产生所期望的进一步减少呕吐的治疗效果。之前也有报道指出，蛛网膜下腔注射布比卡因和吗啡后给与特异性5-HT3受体拮抗剂托烷司琼，并不能显著减少恶心及呕吐的发生[17]。

多项研究认为，除了阿片系统外，5-羟色胺系统也参与伤害性调节[38]。在大鼠研究中观察到，在三叉神经核和大鼠脊髓背角浅层都存在含5-HT的纤维支配[39]，这进一步支持了阿片与5-羟色胺通路间存在着相互作用。另外，内啡肽能抑制性神经元介导5-HT诱导的脊髓镇痛机制，至少部分是通过激活表达内啡肽神经元表面的5-HT3受体起作用的[40]。因此，本研究又提供了阿片与5-羟色胺通路之间存在着联系的证据。

吗啡除了直接作用于5-羟色胺受体外，还间接作用于5-羟色胺系统。吗啡在5-HT再摄取、释放、代谢中的作用通过改变游离5-HT浓度而产生催吐活性的机制可以作为将来研究的方向。

本研究结果提示，人5-HT受体对吗啡来说是一个敏感的、特异性的靶点，阿片对5-HT3受体的作用可能与催吐及镇痛均相关。

致谢（略）

（陈晓琳 译 杜冬萍 校）

（本文编辑 罗艳 王静捷）

