气管插管拔除时的残余肌松作用

Glenn S. Murphy, MD*, Joseph W. Szokol, MD*, Jesse H. Marymont, MD*, Mark Franklin, MD*, Michael J. Avram, PhD, and Jeffery S. Vender, MD*

* Department of Anesthesiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, Illinois; and † Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois

摘要 呼吸肌和咽肌功能在最低程度神经肌肉阻滞时即受损。如果拔除气管内插管时存有残余肌松，则可能导致呼吸系统不良事件的发生。本研究对拔管时残余肌松的发生率和严重程度进行了评估。120 例行妇科或基本外科手术的患者入选本研究。术中采用库尔溴铵维持肌松 [视觉观察 4 个成串刺激 (train-of-four, TOF) 计数为 2]，所有患者在术毕 TOF 计数为 2～4 时以新斯的明拮抗肌松。临床医生通过标准的临床指标 (5 秒钟抬头或握拳、呼之睁眼、可接受的最大吸气负压和肺活量值)，以及外周神经刺激法 (用 TOF 和强直刺激无衰减征象) 判断肌松已经完全恢复后，在拔管前即刻应用肌肉加速度描记图法定量 TOF 比值，患者回到麻醉恢复室后再次测定 TOF 比值。拔管前即刻的平均 TOF 比值为 0.67 ± 0.2；在 120 例患者中有 70 例 (58%) TOF 比值 < 0.7，105 例 (88%) TOF 比值 < 0.9。与手术间内的测得值相比，麻醉恢复室内 TOF 比值 < 0.7 者 (9 例，8%) 和 < 0.9 者 (38 例，32%) 显著减少 (P < 0.001)。我们的研究结果提示，在拔管时神经肌肉阻滞完全恢复的情况非常少见。

Abstract Respiratory and pharyngeal muscle function are impaired during minimal neuromuscular blockade. Tracheal extubation in the presence of residual paresis may contribute to adverse respiratory events. In this investigation, we assessed the incidence and severity of residual neuromuscular block at the time of tracheal extubation. One-hundred-twenty patients presenting for gynecologic or general surgical procedures were enrolled. Neuromuscular blockade was maintained with rocuronium [visual train-of-four (TOF) count of 2] and all subjects were reversed with neostigmine at a TOF count of 2～4. TOF ratios were quantified using accelerometry immediately before tracheal extubation, after clinicians had determined that complete neuromuscular recovery had occurred using standard clinical criteria (5 s head lift or hand grip, eye opening on command, acceptable negative inspiratory force or vital capacity breath values) and peripheral nerve stimulation (no evidence of fade with TOF or tetanic stimulation). TOF ratios were measured again on arrival to the postanesthesia care unit. Immediately before tracheal extubation, the mean TOF ratio was 0.67 ± 0.2; among the 120 patients, 70 (58%) had a TOF ratio < 0.7 and 105 (88%) had a TOF ratio < 0.9. Significantly fewer patients had TOF ratios < 0.7 (9 subjects, 8%) and < 0.9 (38 subjects, 32%) in the postanesthesia care unit compared with the operating room (P < 0.001). Our results suggest that complete recovery from neuromuscular blockade is rarely present at the time of tracheal extubation.

(Anesth Analg 2005; 100: 1840～5)

不易察觉的残余肌松现象在麻醉恢复室（postanesthesia care unit, PACU）很常见。事实上，在手术室（OR）应用了中效肌松剂的病人有 16%～42% 回到 PACU 后其 TOF 比值 < 0.7～0.8[1～3]。这些结果提示，麻醉医生在手术室内凭借标准临床指标无法可靠地检测到残余肌松作用。

呼吸肌和咽肌的功能在轻度神经肌肉阻滞时即可受到影响。对清醒志愿者和手术病人的研究已经证实，TOF 比值为 0.7～0.9 时可能出现气道保护性反射受抑制[4]、上呼吸道梗阻[5]、低氧性通气反应减弱[6]，以及术后低氧血症[7]。基于这些结果，有研究者建议在拔管时肌松应该完全恢复 (TOF 比值 ≥ 0.9)[3,5,8]。由于 TOF 比值为 0.5～1.0 时应用临床方法检测肌松并不敏感，故需要应用定量的神经肌肉监测手段来

受到影响。对清醒志愿者和手术病人的研究已经证实，TOF 比值为 0.7～0.9 时可能出现气道保护性反射受抑制[4]、上呼吸道梗阻[5]、低氧性通气反应减弱[6]，以及术后低氧血症[7]。基于这些结果，有研究者建议在拔管时肌松应该完全恢复 (TOF 比值 ≥ 0.9)[3,5,8]。由于 TOF 比值为 0.5～1.0 时应用临床方法检测肌松并不敏感，故需要应用定量的神经肌肉监测手段来
确定是否存在残余肌松。近来 Debane 等指出：在手术即将结束时应用 TOF 比值监测肌松是非常必要的，而且应该在手术间内拔管前使用。目前尚无研究观察拔管时残余肌松的发生率和严重程度。本研究旨在测定拔管前即刻的 TOF 比值，而此时麻醉医生已经通过临床标准方法确定患者的神经肌肉功能完全恢复；此外，所有受试者都将 PACU 接受检查，以确定是否能回忆起恢复早期曾受到超强神经刺激所引起的疼痛。

方 法

本试验得到 Evanston Northwestern Healthcare IRB 的批准，并获得所有受试者的知情同意。ASA I - II 级、年龄在 18 - 69 岁、择期行妇科或基本外科手术的 120 例患者入选本研究。排除标准包括：①患有神经肌肉疾病或肝肾疾病；②大于理想体重 30%；③预计手术时间 < 60 分钟；④预计有通气困难或气管插管困难；⑤正在服用对神经肌肉传导有影响的药物。

术前静脉注射咪达唑仑 1 - 2 mg，麻醉诱导用丙泊酚 1.5 - 2.5 mg/kg，芬太尼 100 μg，麻醉维持应用 0.5% - 3.5% 七氟醚复合空气/氧气吸入。机械通气维持呼气末二氧化碳在 30 - 34 mm Hg，术中每小时追加芬太尼 1 - 2 μg/kg。所有患者均应用罗库溴铵 0.6 - 0.8 mg/kg 行气管内插管。麻醉医生通过使用标准外周神经刺激器维持一定程度肌松，使得在对尺神经进行超短刺激后可以见到大拇指对 TOF 刺激有两次反应。术中按需追加罗库溴铵 5 - 10 mg 以维持以上程度肌松，手术结束前 20 - 30 分钟不再追加任何肌松剂。所有受试者均使用一种上肢充气保温装置（Bair Hugger，Eden Prairie，MN）维持中心体温 > 35°C，上臂温度 > 32°C。

手术结束时停止吸入七氟醚，并在患者对 TOF 刺激至少有两次反应时用新的明 50 μg/kg，格隆溴铵 10 μg/kg 拮抗肌松。所有麻醉医生都使用我科推荐的评估肌松完全恢复的临床标准（抬头或握拳 5 秒钟、呼之睁眼、最大吸气负压超过 -20 cm H2O 和肺活量达到 15 ml/kg）和外周神经刺激法（TOF 或 50 Hz 的强直刺激无衰减）对是否充分拮抗肌松进行评估。5 秒钟抬头（或握拳）和观察到外周神经刺激无衰减为最基本要求；其他试验应用与否取决于临床麻醉医生。其他的拔管标准包括自主呼吸恢复满意、氧合及通气充分以及能听从语言指令。一旦麻醉医生判定神经肌肉功能已经完全恢复，可以拔除气管内插管时，即由 1 名不了解术中麻醉管理情况的助手用加速仪（见后）测定 TOF 比值。如果存在明显的肌无力（TOF 比值 < 0.6 - 0.7），则由研究助手告知临床麻醉医生推迟拔管几分钟。

拔管前即刻 TOF 比值由加速仪（TOF-Watch；Organon, Inc., Dublin, Ireland）测得。加速度传感器用胶带固定于拇指远端指节，研究时附于挟板固定。固定受试者上肢时要保证拇指能自由活动，并且无任何东西影响其活动。超强（50 ma）的方波 TOF 刺激通过皮肤表面电极传输到尺神经。连续测定两次 TOF 比值（间隔 15 秒），记录两次测量值的均值。如果两次测量值相差 > 10%，则加测次数（最多得到 4 个 TOF 比值），然后取两次最接近值，求出均值。患者到 PACU 后，按上述方法再次测量 TOF 比值。记录并给予新的明拮抗、拔管和测得 TOF 比值之间的间隔时间。两个 TOF 比值的阈值用于衡量是否存在残余肌松：< 0.7 和 < 0.9。所有 TOF 比值的测量值都由 1 名未参与临床麻醉的研究助手来完成。

所有受试者均在术前被告知如何使用 100 mm 的视觉模拟（visual analog scale，VAS）评分法（一端为 0 代表无痛，另一端为 100 代表可想象的最剧烈疼痛）。在离开 PACU 前，试验助手向每位受试者询问是否有在手术室或 PACU 测量 TOF 时的任何疼痛记忆。在麻醉恢复期能回忆起受到尺神经刺激的患者应用 VAS 法来定量描述其不适的程度。

数据以病例数、中位数和范围或均值 ± 标准差表示。在手术室和 PACU 所测 TOF 比值小于、大于或等于预先设定阈值的受试者所占比例用 McNemar’s 检验进行分析。有无严重残余肌松和患者人口统计学参数，以及术中变量之间的相关性使用多元回归分析，无效假设的排除标准为 $P < 0.05$。

结 果

由于入选本研究的患者大多数（84%）是妇科病人，所以存在性别分布不平均的情况（表 1）。术中资料，包括使用罗库溴铵的总量、追加次数以及手术时间见表 2。整个手术过程中的平均中心体温为 36.2°C ± 0.7°C。
表1 患者情况

<table>
<thead>
<tr>
<th>项目</th>
<th>数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者总数</td>
<td>120</td>
</tr>
<tr>
<td>性别（男/女）</td>
<td>17/103</td>
</tr>
<tr>
<td>年龄（岁）</td>
<td>48 ± 8</td>
</tr>
<tr>
<td>体重（kg）</td>
<td>74 ± 14</td>
</tr>
<tr>
<td>身高（cm）</td>
<td>165 ± 9</td>
</tr>
<tr>
<td>ASA 分级（Ⅰ/Ⅱ）</td>
<td>17/103</td>
</tr>
<tr>
<td>吸烟史</td>
<td>19</td>
</tr>
<tr>
<td>酗酒史</td>
<td>72</td>
</tr>
<tr>
<td>术前合并症</td>
<td>30</td>
</tr>
<tr>
<td>心血管系统</td>
<td>18</td>
</tr>
<tr>
<td>呼吸系统</td>
<td>21</td>
</tr>
<tr>
<td>内分泌系统</td>
<td>0</td>
</tr>
<tr>
<td>其他</td>
<td>101</td>
</tr>
<tr>
<td>手术种类</td>
<td>19</td>
</tr>
<tr>
<td>妇科</td>
<td></td>
</tr>
<tr>
<td>基本外科</td>
<td></td>
</tr>
</tbody>
</table>

注：数据以均值 ± 标准差或病例数表示

表2 术中资料

<table>
<thead>
<tr>
<th>项目</th>
<th>数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>罗库溴铵总量（mg）</td>
<td>76 ± 32</td>
</tr>
<tr>
<td>罗库溴铵追加次数</td>
<td>2（0 9）</td>
</tr>
<tr>
<td>手术时间（min）</td>
<td>165 ± 69</td>
</tr>
<tr>
<td>失血量（ml）</td>
<td>356 ± 351</td>
</tr>
<tr>
<td>晶体输入量（ml）</td>
<td>2750 ± 1258</td>
</tr>
<tr>
<td>术毕时体温（℃）</td>
<td>36.2 ± 0.7</td>
</tr>
</tbody>
</table>

注：数据以均值 ± 标准差或中位数（范围）表示

严重残余肌松（TOF 比值 < 0.7）的患者与其一般情况及术中数据之间未观察到相关性。

没有患者能回忆起在术前拔管即刻接受过超强神经刺激，而在 PACU 内只有 9 例（9%）患者记得曾接受 TOF 测定。其平均 VAS 评分为 25 ± 13 mm，没有一例超过 50 mm（0 ～ 100 mm 标尺）。

讨 论

PACU 患者存在残余肌松的问题已得到广泛认可，而对于拔管时残余肌松的发生率和严重程度尚无研究。在本研究中，我们观察到在拔管前即刻只有少部分人（12%）的肌松可以恢复到令人满意的程度（TOF 比值 > 0.9），这就需要用定量监测手段来监测残余肌松。我们还得出这样的结论：超强的刺激电流可以应用于麻醉恢复期病人；只有 8% 的病人能回忆起在术前拔管或 PACU 接受过 TOF-Watch 监测仪 50 mA 刺激电流所进行的肌松监测。

为降低发生呼吸系统不良事件的风险，在拔管时应使神经肌肉功能完全恢复。近来的研究显示，直到 TOF 比值达到 0.8 ～ 1.0 时气道和咽肌功能才能恢复正常。Eikermann 等 [5] 观察到在 TOF 比值为 0.83 时经常会发生吸气气流受阻和上气道梗阻。对清醒志愿者的研究显示，TOF 比值为 0.9 时仍存在咽肌功能和气道保护功能受损 [4]。在 TOF 比值为 0.7 时有 30% 清醒志愿者的低氧性通气反应降低 [6]，并且有人描述了轻度残余肌松和术后低氧血症之间
的相关性。以上研究结果显示，在拔管时即使存在轻度残余肌松也有可能增加肺部不良事件发生的潜在风险。一项大样本、前瞻性、随机研究的结果证实了这一假设。该项有691例患者入选的临床研究结果显示，由潘库溴铵导致的残余肌松可能使术后肺部并发症的发生风险增加3倍。

现在越来越多的人认为应该把 TOF 比值 ≥0.9 定为神经肌肉功能恢复的新基准点。我们在研究中只有少数患者(120 例中有 5 例，占 12%)在拔管时达到了这一标准，有 70 例患者(58%)在麻醉医生判断其肌松已完全恢复，不可能存在残余肌松时，仍存在严重的残余肌松(TOF 比值 < 0.7)。本研究中临床医生无法正确判断手术病人存在残余肌松并不奇怪，一些术后病人在 TOF 比值低至 0.25～0.4 时就能做到 5 秒钟抬头或握拳(本研究中每位临床医生都应用)。在手术室应用外周神经刺激仪可以减少残余肌松的发生，但并不能彻底避免。应用标准的 TOF 或强直刺激来检测神经肌肉功能是否完全拮抗有一定难度，即使是有经验的观察者在 TOF 比值 > 0.4 时也很难检测到衰减。我们的实验结果证实，即使经过认真的临床检查并常规应用外周神经刺激仪，也只有少数患者的 TOF 比值在拔管时能达到 0.9。

在拔管和神经肌肉功能完全恢复之间有个“易损期”，在此期间患者处于可能发生呼呼吸系统不良事件的危险之中。在拔管早期(从拔管到在 PACU 安置妥当)的残余肌松发生率尚无研究，我们的研究结果显示，病人在手术室和向 PACU 转运途中的神经肌肉功能很少能完全恢复。从 PACU 获得的 TOF 比值显示残余肌松的发生率有明显降低，此刻只有 9 例患者(8%)TOF 比值 < 0.7，38 例患者(32%)TOF 比值 < 0.9。这个结果提示在应用中效肌松剂并常规拮抗的情况下，所谓“易损期”很短暂，而且神经肌肉功能恢复迅速。然而，在 PACU 内，大约应用新斯的明拮抗 20 分钟后，仍然有近三分之一的患者未能达到我们提出的神经肌肉功能恢复的新基准点(TOF 比值 ≥0.9)。如果不是在拔管前一些患者测得的 TOF 比值 < 0.6～0.7 时其临床医生被告知需推迟拔管时间，PACU 存在残余肌松的患者数量很可能会更多。

Kopman 等曾经提出残余肌松可能是由于麻醉管理不当的人为因素造成的。在以前的一些研究中，肌松监测和拮抗药应用与否取决于临床麻醉医生，并无统一规定，另外一些研究不在围术期应用肌松监测和拮抗药。我们的研究方案整合了几个众所周知的降低术后残余肌松发生率的方法，包括：在手术室应用外周神经刺激仪；①避免完全用刺激抑制；②使用中效肌松剂；③在 TOF 计数为 2～4 时应用胆碱酯酶抑制剂。尽管严格遵循了尽量减少术后残余肌松的缜密实验设计，Kopman 等发现拮抗罗库溴铵 30 分钟后，在 PACU 仍有 17% 的病人 TOF 比值 < 0.9。本研究中，尽管术中对肌松药应用进行了认真管理、监测及拮抗，但是在拔管后大部分病人的肌松并不能恢复到临床满意水平。因此，让所有恢复早期病人的 TOF 比值 > 0.9 的目标很难达到。

小巧、便携式加速度仪已常规应用在围术期，这种设备能传输 1～60 mA 的刺激电流。尽管在很短的刺激电流范围内 TOF 比值都会保持稳定，但是只有超强神经刺激才能使所有受试者得到稳定精确的数值。临床医生可能不愿意在麻醉苏醒病人使用超强刺激电流，因为对神经的电刺激可导致病性肌肉收缩。在未应用任何药物的清醒志愿者，50 mA 的刺激电流可引起 10 分制的 VAS 评分达 5～6 分。术后恢复早期的患者还存留吸入麻醉药所导致的镇静和镇痛作用，因此我们假设如果在手术室和 PACU 应用超强神经刺激，可能只有少数患者能回忆起神经刺激所致的疼痛。本研究中没有患者回想起拔管前即刻进行的 TOF 刺激，只有 9 例患者(8%)能记起在 PACU 接受 TOF 监测。在这 9 例患者中，平均 VAS(100 mm 分制)评分均较低(25±13)，没有患者出现评分 > 50 mm 的疼痛。我们的结果显示在使用加速度仪监测残余肌松时可使用 50 mA 的刺激电流；在麻醉恢复早期几乎没有人能回忆起接受过 TOF 监测。

本研究尚存在一些缺陷。首先，使用加速度仪来量化残余肌松。有几项研究已经阐述了加速度仪和肌电图所得到的 TOF 比值有密切相关性，而后者被认为是“金标准”。近来的临床研究表明加速度仪可能过高估计肌松的恢复程度，TOF 比值必须达到 0.95～1.0 才能排除残余肌松的存在。
在 [21-22]。因此，本研究可能低估了神经肌肉恢复受损的真实发生率。其次，在手术室应用新斯的明拮抗和测量 TOF 比值/拔管之间有短时的间隔。如果在拔管前 20～30 分钟拮抗拉库溴铵，则残余肌松的风险会有所降低 [16-21]，但是我们的实验设计反映了我科标准的临床惯例（手术结束时应用新斯的明拮抗）。第 3，PACU 患者的残余肌松发生率显著降低可能是由于我们的实验设计所致，因为临床医生被告知在 TOF 计数为 2～3 时拮抗肌松，而且 TOF 比值 <0.6～0.7 时推迟拔管。第 4，在手术室只进行了一组 TOF 测量。拔管前没有用加速度仪记录肌松是否完全恢复。我们相信患者的安全没有受损，因为如果存在严重的残余肌松，临床医生则被告知推迟拔管。最后，我们对所有受试者都应用了 50 mA 的刺激电流，而对于某些患者 50 mA 并不意味着超强电流。

总之，我们认为在拔管时多数病人存在明显的残余肌松。尽管实验中进行了严格监测、对中效肌松剂进行了拮抗并且对肌无力症状进行了仔细的临床检查，但是临床医生仍未能在手术室即令神经肌肉功能恢复到令人满意的程度。为了帮助麻醉医生确保病人神经肌肉功能已完全恢复，呼吸肌和咽肌功能恢复正常，有必要应用量化的肌松监测。

（白玉赫 译 张秀华 校）

参考文献