超声引导下的锁骨上臂丛神经阻滞

Vincent W. S. Chan, MD*; Anahi Perlas, MD*; Regan Rawson, RN†, and Olusegun Odukoya, MD†

* Department of Anesthesia, University of Toronto; and †Department of Anesthesia, Toronto Western Hospital, Toronto, Ontario, Canada

摘要 本研究中我们对40例门诊病人应用目前最先进的超声技术进行的锁骨上臂丛神经阻滞进行了评价。在阻滞前应用超声显像对臂丛神经定位，引导穿刺针到达靶神经，并观察局麻药扩散方式。注药前，通过神经刺激进一步确认针的位置。我们描述的阻滞技术是使进针路径与超声波束平行。95% 病例一次穿刺后阻滞成功，一侧因药物注射至皮下而失败，一侧因部分注入血管而失败。没有发生气胸的病例。我们的初步资料表明，高清晰度的超声探头能够可靠地辨认锁骨上区臂丛及其邻近组织结构。在进针过程中使用实时引导技术可以快速地确定神经丛的位置。通过超声技术清晰观察到局麻药扩散方式，可以进一步确认穿刺针位置正确。

Abstract In this study, we evaluated state-of-the-art ultrasound technology for supraclavicular brachial plexus blocks in 40 outpatients. Ultrasound imaging was used to identify the brachial plexus before the block, guide the block needle to reach target nerves, and visualize the pattern of local anesthetic spread. Needle position was further confirmed by nerve stimulation before injection. The block technique we describe aligned the needle path with the ultrasound beam. The block was successful after one attempt in 95% of the cases, with one failure attributable to subcutaneous injection and one to partial intravascular injection. Pneumothorax did not occur. Our preliminary data suggest that a high-resolution ultrasound probe can reliably identify the brachial plexus and its neighboring structures in the supraclavicular region. The technique of real-time guidance during needle advancement can quickly localize nerves. Distinct patterns of local anesthetic spread observed on ultrasound can further confirm accurate needle location.

(Anesth Analg 2003; 97: 1514 – 7)

方法

经医院伦理委员会批准，获得书面同意后，选择40名择期行上肢手术的门诊病人接受超声引导下锁骨上臂丛神经阻滞。排除上肢神经缺陷或锁骨上臂丛阻滞禁忌的患者。

前29例病人使用了配备8 – MHz 直线探头的东芝 Core Vision Pro unit (东芝公司，东京，日本)。其余11名患者使用的是配备5 – 12MHz 直线探头，彩色多普勒、能复合成像的飞利浦 ATL HDI 5000SonoCT unit。

待病人开放静脉和建立常规监测后，扫描臂丛和周围结构的关系。患者仰卧位头偏向对侧45度,
超声探头放在锁骨上窝的冠状斜面，在横断面下观察锁骨下动脉和臂丛（例如，在约 90 度时，图 1）。臂丛是一簇低回声点，常位于圆型搏动性低回声锁骨下动脉的侧面，锁骨下动脉位于高回声的第一肋上方。

图 1 在横断面的锁骨上区声波图中，臂丛是一组低回声节（箭头），位于锁骨下动脉（SA）的侧面，第一肋（R）的头侧。SAM = 前斜角肌；SV = 锁骨下静脉；PL = 胸膜；med = 内侧；lat = 外侧。1 ~ 3 的数字表示深度（厘米）。

接着，皮肤消毒和麻醉后，将 22 号 50mm 的绝缘阻滞针（Stimulplex；Braun Medical）从探头（在无菌封套内）的外侧端放入，沿超声束方向，与探头长轴平行进针（图 2），并实时观察针的移动方向。一旦针尖达到臂丛（图 3），打开神经刺激器（Stimulplex），从 0.5mA 开始增加至最大 1.5mA 诱发肌颤搐，检查并记录最小刺激电流，肌颤搐的部位、是否有异感出现。然后，将含有 1:200000 肾上腺素的 2% 利多卡因 20ml 和 0.5% 的布比卡因 20ml 在 3 ~ 5 分钟内缓慢注入，实时观察局麻药的扩散情况。如果臂丛的某些部位药物尚未扩散到，可在注射一半局麻药之前再次定位。

由独立观察者用 23 号针以针刺法，在 30 分钟内每 5 分钟检查一次正中神经、尺神经、桡神经和肌皮神经支配区域的麻醉程度和运动阻滞程度。注入局麻药 30 分钟内所有区域感觉和运动完全阻滞被认定为阻滞成功。如果手术区域麻醉失败辅以局部浸润麻醉，必要时可改用全身麻醉。

观察记录阻滞过程所需要的时间（从探头定位

图 2 超声引导进针技术的图例，分别从前后位（A）和俯视（B）观察在左锁骨上区一手持探头一手持绝缘针的情景。针位于超声探头的外端，与超声束平行前进。

图 3 锁骨上区针（箭头）与臂丛（N）接触的超声横断图。高回声直线表示针轴和针尖。1 ~ 3 的数字表示深度（厘米）。SA = 锁骨下动脉；med = 内侧；lat = 外侧。
开始到局麻药注射完毕、试针的次数、局麻药扩散的模式、阻滞后并发症、在麻醉后恢复室（PACU）的视觉疼痛评分以及患者的舒适度。连续数据以均数±标准差表示。

结论

40例病人（男性26名，女性14名，年龄45±15岁，身高170±11cm，体重77±15kg，体重指数26±5 kg/m²）完成了本研究。手术时间77.9±40.4分钟，2例前臂手术，9例腕部手术，29例手和手指手术。所有病例在超声横断显像中，可见臂丛是一簇大小不同的低回声结节，始终偏外偏高，并且臂丛神经丛是一簇不同大小、始终位于锁骨下动脉侧后方，并常常向头方向延伸的低回声节。常常是位于锁骨下动脉的头侧。

臂丛阻滞由5位麻醉医师完成（1名主治医师，1名总住院医师，3名住院医师），共完成了38/40。虽然只有2名研究者有超声检查经验（小于5例），阻滞过程在1次尝试中（中位数；范围，1~2）需要9.0±4.4分钟。使用0.46ml（范围，0.2~0.7ml）电流可以诱发一个或多个肌群收缩者，常规用左中神经、肌皮神经和尺神经分别为55%、30%、10%、8%。出现感觉和运动阻滞为5.4±1.8分钟，达到完全阻滞需16.7±5.5分钟，11.4±4.2小时后阻滞消失。PACU疼痛评分低（均数<0.3，10分制），患者对于镇痛作用的舒适度高（中位数为9，10分制）。

有1例因药物注入皮下而失效，尽管在注药时超声显示不出不常见扩散模式，但我们仍未发现。另一失败病例发现局麻药部分注入血管内，30分钟内阻滞不全，但未至时阻滞完全。术后并发症包括1例Horner’s征和1例短暂感觉异常（<48小时），无气胸病例发生。

讨论

我们的数据显示，超声引导的锁骨上臂丛神经阻滞对于临床准确地定位神经和减少试针次数是有效的。本研究中，神经定位通过两种方法确认：超声和电刺激。单独使用超声是否能够保证同样的成功，值得进一步研究。与以往传统技术评估不同，超声技术可以确定臂丛神经的粗细、深度、准确位置及其邻近结构。在阻滞之前进行解剖学检查可以确定进针的准确位置和深度，避免刺破血管和胸膜，并可增强麻醉医师操作时的信心。

超声实时成像技术有助于引导穿刺针到达靶神经，减少试穿。在可视指导下，进针更有目的性，并根据持续的成像反馈，可避免反复穿刺进行神经定位。我们的进针技术是独特的，与以前所教的完全不同。一手持探头，另一手将穿刺针从探头远端的侧面向正中方向进入（图2），这样进针有两个原因。首先，当探头在锁骨上窝定位时，中间留给穿刺针操作的空间有限。第二，臂丛位于锁骨下动脉的侧，因此侧入路是最合理和直接的。虽然Kapral et等和Yang等都报道在超声引导下阻滞成功，但没有透露进针的技术。而且，臂丛是在矢状面（纵向）扫描，与本研究在冠状斜面（横向）扫描相反。

实时观察进针过程是我们所描述的超声技术的一个重要方面。有目的地使进针方向在超声束的同一平面，例如沿着超声显像线所在的探头长轴方向。针和探头在同轴度时，在阻滞过程中就可以持续追踪到针体和针尖（图3所见的高回声线）的移动。只要在超声下针没有超过第一肋或胸膜，就可完全排除气胸的危险。然而，如果针和探头不在同轴度时，针尖不能完全看见，进针则可能比预计的深，就像本实验中意外刺破锁骨下动脉的那例病人一样。
在超声显像下，神经就像可以运动的组织一样，可避开针或局麻药。给药过程中可观察到局麻药两种扩散模式。第一种，单次注入到神经内可将神经推至外周，提示局麻药周围性扩散。包含有神经的腔隙膨胀，被一层高回声带包裹，可能是神经鞘。

第二种，扩散是不对称的，局麻药仅与部分神经丛接触而没有明显的鞘（图 5）。这种情况下，我们有意地进行第二次注射，但不清楚为保证麻醉完全，两次注射是否有必要。

总之，我们发现在超声引导下行锁骨上臂丛神经阻滞，临床上是有效的，可以进行神经定位而增加进针的信心和准确性，并可检查局麻药的扩散方式。

（赵 磊 译 杨旭贤 校）

参考文献