一项 BIS 指导下闭环联合输注丙泊酚和雷米芬太尼的
随机多中心研究

Ngai Liu, MD, PhD, Thierry Chazot, MD, Sophie Hamada, MD, Alain Landais, MD, Nathalie Boichut, MD, Corinne Dussaussoy, MD, Bernard Trillat, MSc, Laurent Beydon, MD, Emmanuel Samain, MD, Daniel I. Sessler, MD, and Marc Fischler, MD

Service d’Anesthésie, and Service d’Informatique, Hôpital Foch, Suresnes; Service d’Anesthésie, CH Victor Dupouy, Argenteuil; Département d’Anesthésie et de Réanimation Chirurgicale, CHU de Besançon, Besançon; Département d’Anesthésie et de Réanimation Chirurgicale, CHU d’Angers, Angers, France; and Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio

摘要 背景 我们开发出来一种比例-积分-微分控制器，可以在全麻诱导和维持期间实现在双频指数（bispectral index, BIS）监测指导下对丙泊酚和雷米芬太尼的闭环联合输注。本研究比较了其与人工靶控输注的差异。方法 这项多中心研究纳入了196例手术患者，随机分入双闭环或人工输注两组进行比较。该指标包括充分麻醉即 BIS 在 40−60 的时间比例、执行误差绝对中位数及摆动等整体性能。其他次要的观察指标包括爆发抑制比的发生率、气管插管所需时间以及用药量。结果 双环控制组中 83 例患者和人工控制组中 84 例患者完成了试验。双环组总体分数组较好，充分麻醉的时间较长（26 ± 11 vs 43 ± 40, P < 0.0001; 82% ± 12% vs 71% ± 19%, P < 0.0001）。超过目标值（BIS < 40）、未达目标值（BIS > 60）以及爆发抑制比的发生在双环组出现明显较少。双环组需要更频繁地对丙泊酚和雷米芬太尼的输注做出调整，但调节幅度较小；该组患者雷米芬太尼的使用量较大[(0.22 ± 0.07) μg·kg⁻¹·min⁻¹ vs (0.16 ± 0.07) μg·kg⁻¹·min⁻¹; P < 0.0001]，而气管插管的速度较快[(10 ± 4) 分钟 vs (11 ± 5) 分钟; P = 0.02]。结论 全麻期间，控制器可以帮助自动
输注丙泊酚和雷米芬太尼，并将 BIS 值维持在预定范围内，这一点优于人工输注。

Abstract BACKGROUND: We have developed a proportional-integral-derivative controller allowing the closed-loop coadministration of propofol and remifentanil, guided by a Bispectral Index (BIS) monitor, during induction and maintenance of general anesthesia. The controller was compared with manual target-controlled infusion. METHODS: In a multicenter study, 196 surgical patients were randomly assigned to dual closed-loop or manual administration of propofol and remifentanil. Comparison between groups was evaluated by calculating a global score that characterized the overall performance of the controller including the percentage of adequate anesthesia, defined as BIS between 40 and 60, the median absolute performance error, and wobble. Secondary outcomes included occurrence of burst suppression ratio, time to tracheal extubation, and drug consumption. RESULTS: Eighty-three patients assigned to dual-loop control and 84 patients assigned to manual control completed the study. The global score and the percentage of time with BIS between 40 and 60 were better in the dual-loop group (26 ± 11 vs 43 ± 40, P < 0.0001; 82% ± 12% vs 71% ± 19%, P < 0.0001). Overshoot (BIS < 40), undershoot (BIS > 60), and burst suppression ratio were all significantly less common in the dual-loop group. Modifications to the propofol and remifentanil infusions were more frequent, and adjustments smaller in the dual-loop group. Remifentanil consumption was greater (0.22 ± 0.07 vs 0.16 ± 0.07 μg·kg⁻¹·min⁻¹; P < 0.0001) and the speed to tracheal extubation was shorter (10 ± 4 vs 11 ± 5 minutes; P = 0.02) in the dual-loop group. CONCLUSIONS: The controller allows the automated delivery of propofol and remifentanil and maintains BIS values in predetermined boundaries during general anesthesia better than manual administration.

(Anesth Analg 2011; 112; 1546−57)
麻醉药物以剂量依赖的方式改变皮层脑电活动，这提示脑电图活动可以为催眠水平的测量提供一个可靠的基础[1]。双频指数（bispectral index，BIS）是一种脑电图（electroencephalography，EEG）监测，已被证明可以指导催眠药物水平的调节[2-3]。由于BIS是一种单一的复合型连续监测方法，它已被用在指导丙泊酚输注的对比研究[4-7]。但是，关于利用EEG活动来自动输注阿片类药物的描述还很少[8]。

我们利用比例—积分—微分运算开发出了一种闭环控制器，它可以在全身麻醉的诱导和维持期间仅在BIS监测下指导丙泊酚和雷米芬太尼的联合静脉输注。我们特别要验证与人工输注比较，这种闭环控制器可以使BIS值维持在预定范围内（即40～60）的时间延长，并减少BIS波动的这种设想。

2. 研究步骤

患者被随机分入双环（双环组）或人工（人工组）TCI丙泊酚和雷米芬太尼组。每个研究中心再根据处理情况将患者分为10个区组，利用一个随机数字表对患者进行随机分组。术前，分组情况被存放在顺序编号的不透明的信封里。

患者到达手术室后，开放一个专门的静脉通路，包括体温在内的常规监测并在拇收肌的位置监测神经肌肉功能。将BIS电极（Zipprep；双频指数，Covidien，Mansfield，MA）放置在患者前额并与一个A-2000 XP（3.11版）BIS监测仪（Covidien）或一个BIS模块（Datec-OhmedaTM S/5TM，赫尔辛基，芬兰）连接。

两个组的诱导阶段定义为从丙泊酚和雷米芬太尼输注开始到BIS低于60达30秒为止，维持阶段是从该时间点到输注结束。

在人工组中，研究员根据临床经验选择用于诱导的丙泊酚和雷米芬太尼的初始效应部位目标浓度。随后维持BIS在50左右（40～60）进行调节，对效应部位浓度的调节没有最小或最大浓度的限制。为避免伤害性刺激（如喉镜检查或气管插管），诱导阶段只能通过面罩进行人工通气。手术过程中，如果出现镇痛不足（心动过速、高血压、出汗、面部潮红、体动或吞咽）或催眠不够（BIS值高于40～60），主治医师可以酌情增加雷米芬太尼或丙泊酚的浓度。

在双环组中，研究员根据临床经验选择丙泊酚的初始效应部位目标浓度，然后控制器依据下列原则确定雷米芬太尼的最初浓度：如果丙泊酚的初始浓度<2.5μg/ml，则雷米芬太尼的初始目标浓度为4ng/ml；如果丙泊酚的初始浓度在2.5～2.9μg/ml，

1. 研究对象

获得伦理委员会以及法国监管办公室（法国卫生安全和健康产品委员会）批准、签署知情同意书后，来自Foch医院（Suresnes）、Vicor Dupouy中心医院（Argentenil）、Besancon大学和Angers大学中心医院等4家医院的、需要全身或区域/全身复合麻醉、预计手术时间超过30分钟、需要气管插管的196例患者被纳入研究。所有研究员在使用靶控输注（target controlled infusion，TCI）丙泊酚和雷米芬太尼以及BIS监测方面都具有丰富的临床经验，且在Foch医院进行为期2天的有关闭环控制器的培训。患者年龄18～90岁，ASA分级为I～IV级。排除标准包括伴有神经系统疾病、脊髓上神经系统疾病、进行颅脑神经外科手术以及装有起搏器的患者。

讨论

1. 研究对象

获得伦理委员会以及法国监管办公室（法国卫生安全和健康产品委员会）批准、签署知情同意书后，来自Foch医院（Suresnes）、Vicor Dupouy中心医院（Argentenil）、Besancon大学和Angers大学中心医院等4家医院的、需要全身或区域/全身复合麻醉、预计手术时间超过30分钟、需要气管插管的196例患者被纳入研究。所有研究员在使用靶控输注（target controlled infusion，TCI）丙泊酚和雷米芬太尼以及BIS监测方面都具有丰富的临床经验，且在Foch医院进行为期2天的有关闭环控制器的培训。患者年龄18～90岁，ASA分级为Ⅰ～Ⅳ级。排除标准包括伴有神经系统疾病、脊髓上神经系统疾病、进行颅脑神经外科手术以及装有起搏器的患者。
则雷米芬太尼的初始目标浓度为5ng/ml；如果丙泊酚的初始浓度 > 2.9μg/ml，则雷米芬太尼的初始目标浓度为6ng/ml。因此，这种由控制器决定的对丙泊酚和雷米芬太尼效应部位目标浓度的调节是有一定限制的(丙泊酚在1.3～5μg/ml，雷米芬太尼在3～12 ng/ml)。与人工组一样，诱导阶段只允许通过面罩进行人工通气。手术过程中，如果有必要，研究可以调整目标浓度，或者在闭环和人工控制间进行转换。图1、附录以及表1对控制器进行了详细描述。

表1 控制器的比例增益

<table>
<thead>
<tr>
<th>BIS 监测</th>
<th>K丙泊酚</th>
<th>K雷米芬太尼</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>-9</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>-8</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>-7</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>-6</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>-5</td>
<td>∞</td>
<td>65</td>
</tr>
<tr>
<td>-4</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>-3</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10或更小</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

注：双侧指(BIS)是设定值 50 与实测 BIS 值之差；K丙泊酚和K雷米芬太尼为丙泊酚和雷米芬太尼的增益常数。这些值是由Infusion Toolbox95软件中的模拟器实验性地确定的。

足下述所有条件时拔除气管导管：患者有反应、能合作；吸入氧浓度＜50%的情况下SpO2＞95%；T4/T1＞90%；无血流动力学紊乱(持续输注血管活性药物)；且体温＞36.0℃。

主要观察指标是总体分数(GS) [5]，它反映了包括充分麻醉(BIS在40-60之间)所占时间比例以及由执行误差绝对中位数(MDAPE)和摆动决定的BIS波动在内的控制器的整体性能。通过以下公式计算控制器的性能。

- 执行误差，或PE，是实测值与预测值(设定值)之差：

 \[PE = \frac{1}{N} \sum_{i=1}^{N} \left| BIS_{i} - BIS_{\text{设定}} \right| \times 100 \]

- 偏差或执行误差中位数(MDPE)：
MDPEi = 中位数 [PEij, j = 1, ⋯ , Nj]
• 不准确度或 MDAPE;
MDAPEi = 中位数 [| PEij | , j = 1, ⋯ , Nj]
• 摆动，反映了 PE 中的个体差异；
Wobblei = [| PEij − MDPEi | , j = 1, ⋯ , Nj]

i 代表研究对象的编号，j 代表观察期的第 j 次的测量结果，n 代表观察期间的总测量数。

GS 通过以下公式计算 [5]:
GS = (MDAPE + wobble)% BIS 值 (40～60)

低 MDAPE 和摆动同时 BIS 值在 40～60 所占时间比例高，并由此得到低的 GS 说明该控制器的性能好。

次要的指标包括充分麻醉（定义为 BIS 在 40～60）、麻醉过深 (BIS < 40) 和麻醉过浅 (BIS > 60) 所占的时间比、抑制比 (SR) 即 SR > 10% 持续至少 1 分钟及 Varvel 等 [16] 的一些参数 (PE、MDPE、MDAPE、摆动)。次要指标：药物用量、躯体事件 (即体动、痛苦表情) 的次数、气管拔管的时间 (即从停止输注丙泊酚和雷米芬太尼到拔管的时间) 以及术后第二天或第三天在麻醉后恢复室通过标准化询问获得的有关术语知觉情况 [17]。

该研究在 ClinicalTrials.gov 上登记，号码为 NCT00392158。

3. 统计分析

在之前的探索中，用人工输注丙泊酚和雷米芬太尼得到的 GS 为 50 ± 62 (平均值 ± 标准差)，用闭环控制丙泊酚和人工输注雷米芬太尼得到的 GS 为 21 ± 8 [5]；我们期望通过用闭环系统能得到一个超过 50% 的改善率。这样的话，要得到一个双侧 α 为 0.01，检验效力为 95%，预计需要 144 例患者 (每组 72 例)。鉴于某些患者可能因各种原因退出研究，我们计划招募 200 例患者。

用数字和频数表示分类数值，χ² 检验或 Fisher 精确检验进行比较。连续数据用平均值 ± 标准差、中位数和四分位数表示，Mann-Whitney U 检验进行比较。系列测量数据用重复测量方差分析进行比较 (Bonferroni 校正)，多重比较使用非参检验。停用丙泊酚和雷米芬太尼到气管拔管的时间用 Kaplan-Meier 生存分析进行比较，然后用 log-rank 进行检验。用 SPSS11.0 进行统计学分析 (SPSS, Inc., Chicago, IL)，P < 0.05 被认为有统计学意义。

结 果

在招募的 200 例患者中，196 例被纳入研究，随机分成两组，每组 98 例。双环组中 15 例和人工组中 14 例由于神经系统疾病、BIS 的人工缺陷、记录系统的障碍以及其他原因从分析中被排除 (图 2)。因此，双环组 83 例患者和人工组 84 例进入有效分析。

两组患者在人口统计学、形态计量学和治疗方面相似。超过 1/3 的研究对象接受了术前心血管治疗和 (或) 接受了大型手术 (表 2)。手术类型包括心脏搭桥、胸科、血管、泌尿、整形外科、妇科或耳鼻喉科手术。

![图 2 试验流程](image)

该研究在 4 个不同医院进行，共有 17 位麻醉医生和 22 位麻醉护士参与。在任何观察终点上没有发现显著的区域差异或区组交互作用。从所有区域收集的数据合并进行分析。

闭环系统维持麻醉共达 312 小时。在此期间，对丙泊酚和雷米芬太尼目标浓度的自动调节次数分别为 3843 次和 4981 次。发生了 2 例开环事件，都是由于在放置喉镜过程中发生了高血压而需要人工调整雷米芬太尼。这些患者的情况在双环组中进行了说明。
表2 患者入手术室时的资料

<table>
<thead>
<tr>
<th></th>
<th>人工组（n=84）</th>
<th>双环组（n=83）</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>年龄（岁）</td>
<td>61 ± 16，59(49 ~ 74)</td>
<td>57 ± 15，59(49 ~ 68)</td>
<td>0.12</td>
</tr>
<tr>
<td>男性</td>
<td>45(54)</td>
<td>54(64)</td>
<td>0.18</td>
</tr>
<tr>
<td>身高（cm）</td>
<td>168 ± 7，170(164 ~ 173)</td>
<td>169 ± 9，168(162 ~ 175)</td>
<td>0.58</td>
</tr>
<tr>
<td>体重(kg)</td>
<td>073 ± 15，71(65 ~ 80)</td>
<td>071 ± 14，70(59 ~ 80)</td>
<td>0.38</td>
</tr>
<tr>
<td>ASA III/IV</td>
<td>14(17)</td>
<td>15(18)</td>
<td>0.60</td>
</tr>
<tr>
<td>术前心血管治疗</td>
<td>32(38)</td>
<td>39(46)</td>
<td>0.31</td>
</tr>
<tr>
<td>大手术</td>
<td>32(38)</td>
<td>30(35)</td>
<td>0.67</td>
</tr>
<tr>
<td>全麻复合区域麻醉</td>
<td>15(18)</td>
<td>10(12)</td>
<td>0.79</td>
</tr>
</tbody>
</table>

注：数值用平均值 ± 标准差，中位数（分位间距）；以例数(%)表示

术前心血管治疗指使用β受体阻滞剂、钙通道阻断剂、血管紧张素转化酶抑制剂或者利尿剂

图3 从诱导到停药双频指数（BIS）值和计算出的丙泊酚和雷米芬太尼的效应部位浓度

注：(i) 1 个病例 1 分钟间隔的滑动平均滤波的图形；(ii) 10% ~ 90% 的中位值。图下方的曲线表示给定时间麻醉患者的例数

图3 显示了双环组和人工组从诱导到输注停止的 BIS 值以及计算出的丙泊酚和雷米芬太尼的效应位浓度。

双环组的诱导期显著短于人工组[(289 ± 122)秒 vs (345 ± 166)秒, P = 0.01]。两组患者丙泊酚的初始效应位浓度和总量相似，但在双环组中，雷米芬太尼的这些值较高（表3）。比起人工组，双环组对丙泊酚和雷米芬太尼做出的调整次数更多（表3），诱导
期间出现麻醉过深、麻醉过浅和 SR 发生的情况较少（表 3）。

维持期间，双环组的平均 GS 为 26 ± 11，而人工组为 43 ± 40 (P = 0.0001, 表 4, 图 4)。比起人工组，双环组的 BIS 维持在 40 ~ 60 的总时间显著较长 (表 4 和 图 5), MDAPE 明显较低，但两组的摆动情况类似 (表 4)。双环组中发生麻醉过深、麻醉过浅和 SR 发生的情况均较少 (表 4)。两组患者丙泊酚的剂量和计算出的平均效应部位浓度相似，但在双环组中神

表 3 麻醉诱导期比较

<table>
<thead>
<tr>
<th></th>
<th>人工组 (n=84)</th>
<th>双环组 (n=83)</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>术前用药</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>无</td>
<td>9(11)</td>
<td>6(7)</td>
<td>0.17</td>
</tr>
<tr>
<td>羟嗪</td>
<td>67(80)</td>
<td>61(73)</td>
<td></td>
</tr>
<tr>
<td>地西泮</td>
<td>8(9)</td>
<td>16(19)</td>
<td></td>
</tr>
<tr>
<td>持续时间(秒)</td>
<td>345 ± 166, 322(228 ~ 436)</td>
<td>289 ± 122, 283(202 ~ 364)</td>
<td>0.01</td>
</tr>
<tr>
<td>丙泊酚剂量 (mg/kg)</td>
<td>1.3 ± 0.7, 1.1(0.9 ~ 1.7)</td>
<td>1.3 ± 0.6, 1.1(0.9 ~ 1.6)</td>
<td>0.99</td>
</tr>
<tr>
<td>丙泊酚的初始效应部位目标浓度(μg/ml)</td>
<td>3.1 ± 1.2, 2.5(2.5 ~ 3.0)</td>
<td>3.1 ± 0.5, 3.0(2.8 ~ 3.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>丙泊酚的最大效应部位目标浓度(μg/ml)</td>
<td>4.1 ± 1.6, 4.0(3.0 ~ 5.0)</td>
<td>4.0 ± 0.9, 4.0(3.6 ~ 4.6)</td>
<td>0.72</td>
</tr>
<tr>
<td>丙泊酚目标浓度的调节次数</td>
<td>2.5 ± 2.6, 2.0(0.3 ~ 4.0)</td>
<td>4.0 ± 3.0, 4.0(2.0 ~ 5.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>雷米芬太尼剂量 (mg·kg⁻¹)</td>
<td>1.7 ± 0.8, 1.4(1.1 ~ 1.9)</td>
<td>2.3 ± 1.2, 2.1(1.5 ~ 2.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>雷米芬太尼的初始效应部位目标剂量(μg/ml)</td>
<td>4.0 ± 1.8, 4.0(2.5 ~ 5.5)</td>
<td>5.4 ± 1.2, 6.0(5.5 ~ 6.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>雷米芬太尼的最大效应部位目标剂量(μg/ml)</td>
<td>5.3 ± 1.9, 5.0(4.0 ~ 6.5)</td>
<td>7.5 ± 2.6, 7.0(5.6 ~ 9.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>雷米芬太尼目标浓度的调节次数</td>
<td>3.3 ± 2.7, 3.0(1.0 ~ 5.0)</td>
<td>4.2 ± 3.2, 3.0(2.0 ~ 6.0)</td>
<td>0.02</td>
</tr>
<tr>
<td>NMBD</td>
<td>76(90)</td>
<td>76(90)</td>
<td>0.99</td>
</tr>
<tr>
<td>低血压和高血压的治疗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>麻黄素</td>
<td>36(43)</td>
<td>33(43)</td>
<td>0.66</td>
</tr>
<tr>
<td>抗高血压治疗</td>
<td>1(1)</td>
<td>1(1)</td>
<td>0.99</td>
</tr>
<tr>
<td>BIS 值</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>麻醉过深，BIS <40(秒)</td>
<td>34 ± 48, 5(0 ~ 60)</td>
<td>20 ± 29, 5(0 ~ 30)</td>
<td>0.16</td>
</tr>
<tr>
<td>麻醉过浅，BIS >70(秒)</td>
<td>8 ± 21, 0(0 ~ 0)</td>
<td>2 ± 7, 0(0 ~ 0)</td>
<td>0.016</td>
</tr>
<tr>
<td>SR 的发生情况</td>
<td>16(19)</td>
<td>7(8)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

注：数值用平均值 ± 标准差，中位数（四分位间距）；以例数（％）表示

持续时间指诱导的时间，定义为从丙泊酚输注开始到 BIS 低于 60 持续 30 秒；NMBD 指神经肌肉阻断药物的使用；麻醉过深，BIS <40 指 BIS 值降低并保持在 60 以下后的 3 分钟内 BIS 低于 40 所持续的时间；麻醉过浅，BIS >70 指 BIS 值降低并保持在 60 以下后的 3 分钟内 BIS 高于 70 所持续的时间；SR 指爆发抑制比
表 4 麻醉维持期比较

<table>
<thead>
<tr>
<th></th>
<th>人工组 (n = 84)</th>
<th>双环组 (n = 83)</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>持续时间 (分钟)</td>
<td>150 ±81, 131(89 ~ 189)</td>
<td>140 ±78, 117(89 ~ 176)</td>
<td>0.38</td>
</tr>
<tr>
<td>丙泊酚</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均剂量 (mg · kg⁻¹ · h⁻¹)</td>
<td>5.0 ±1.6, 4.7(3.8 ~ 6.3)</td>
<td>4.7 ±1.6, 4.5(3.7 ~ 5.7)</td>
<td>0.32</td>
</tr>
<tr>
<td>增加值 (μg/ml)</td>
<td>0.58 ±0.36, 0.50(0.33 ~ 0.73)</td>
<td>0.31 ±0.09, 0.28(0.25 ~ 0.35)</td>
<td><0.0001</td>
</tr>
<tr>
<td>平均效应部位浓度 (μg/ml)</td>
<td>2.3 ±0.6, 2.1(1.9 ~ 2.6)</td>
<td>2.4 ±0.7, 2.3(1.8 ~ 2.8)</td>
<td>0.37</td>
</tr>
<tr>
<td>每小时的调节次数</td>
<td>9 ±6, 8(5 ~ 13)</td>
<td>26 ±5, 26(22 ~ 28)</td>
<td><0.0001</td>
</tr>
<tr>
<td>雷米芬太尼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均剂量 (μg · kg⁻¹ · h⁻¹)</td>
<td>0.16 ±0.07, 0.16(0.11 ~ 0.20)</td>
<td>0.22 ±0.07, 0.20(0.17 ~ 0.27)</td>
<td><0.0001</td>
</tr>
<tr>
<td>增加值 (ng/ml)</td>
<td>1.23 ±0.60, 1.12(0.80 ~ 1.57)</td>
<td>0.94 ±0.28, 0.91(0.78 ~ 1.07)</td>
<td>0.001</td>
</tr>
<tr>
<td>平均效应部位浓度 (ng/ml)</td>
<td>4.8 ±1.6, 4.5(3.7 ~ 5.8)</td>
<td>6.1 ±1.4, 6.3(4.9 ~ 6.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>每小时的调节次数</td>
<td>8 ±6, 7(4 ~ 10)</td>
<td>32 ±8, 33(28 ~ 37)</td>
<td><0.0001</td>
</tr>
<tr>
<td>NMBD</td>
<td>42(50)</td>
<td>46(55)</td>
<td>0.48</td>
</tr>
<tr>
<td>低血压和高血压的治疗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>麻黄素</td>
<td>29(35)</td>
<td>30(36)</td>
<td>0.92</td>
</tr>
<tr>
<td>抗高血压治疗</td>
<td>12(14)</td>
<td>14(17)</td>
<td>0.40</td>
</tr>
<tr>
<td>失血量 >500ml</td>
<td>14(17)</td>
<td>7(8)</td>
<td>0.11</td>
</tr>
<tr>
<td>林格液的输注量 (ml · kg⁻¹ · h⁻¹)</td>
<td>7 ±4, 7(4 ~ 10)</td>
<td>8 ±5, 6(5 ~ 10)</td>
<td>0.91</td>
</tr>
<tr>
<td>体动</td>
<td>6(7)</td>
<td>7(8)</td>
<td>0.79</td>
</tr>
<tr>
<td>吗啡剂量 (ng/kg)</td>
<td>0.06 ±0.04, 0.6(0 ~ 0.1)</td>
<td>0.06 ±0.04, 0.07(0 ~ 0.1)</td>
<td>0.51</td>
</tr>
<tr>
<td>气管插管的时间 (分钟)</td>
<td>11 ±5, 10(6 ~ 14)</td>
<td>10 ±4, 9(7 ~ 12)</td>
<td>0.02</td>
</tr>
<tr>
<td>BIS 值</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIS <40(%)</td>
<td>24 ±21, 17(7 ~ 39)</td>
<td>15 ±11, 12(6 ~ 22)</td>
<td>0.016</td>
</tr>
<tr>
<td>BIS <45(%)</td>
<td>51 ±24, 53(33 ~ 72)</td>
<td>41 ±19, 38(29 ~ 54)</td>
<td>0.005</td>
</tr>
<tr>
<td>40 < BIS <60 (%)</td>
<td>71 ±19, 76(59 ~ 85)</td>
<td>82 ±12, 85(73 ~ 91)</td>
<td><0.0001</td>
</tr>
<tr>
<td>BIS >60(%)</td>
<td>5 ±7, 2(0 ~ 6)</td>
<td>3 ±4, 1(0 ~ 3)</td>
<td>0.031</td>
</tr>
<tr>
<td>平均 BIS</td>
<td>46 ±5, 46(42 ~ 49)</td>
<td>47 ±4, 47(45 ~ 49)</td>
<td>0.142</td>
</tr>
<tr>
<td>SR 的发生情况</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>-8.0 ±9.8, -8.3(-15.2 ~ -2.0)</td>
<td>-6.4 ±7.3, -5.7(-10.3 ~ -2.7)</td>
<td>0.142</td>
</tr>
<tr>
<td>MDPE</td>
<td>-9.7 ±9.6, -10.1(-17.1 ~ -3.1)</td>
<td>-6.9 ±6.4, -6(-12 ~ -2.8)</td>
<td>0.018</td>
</tr>
<tr>
<td>MDAPE</td>
<td>15.0 ±5.5, 14.1(11.5 ~ 18.0)</td>
<td>11.4 ±4.3, 10.5(9.0 ~ 14.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>搏动</td>
<td>9.2 ±3.5, 8.3(7.0 ~ 11)</td>
<td>8.7 ±3.3, 8.0(7.0 ~ 10.0)</td>
<td>0.283</td>
</tr>
<tr>
<td>总体分数</td>
<td>43 ±40, 31(24 ~ 49)</td>
<td>26 ±11, 23(19 ~ 30)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

注：数值用平均值 ± 标准差，中位数（四分位间距）；以例数（%）表示

NMDB：指神经肌肉阻断药物的使用；气管插管时间指停止输注丙泊酚和雷米芬太尼到气管插管的时间；BIS <40 为 BIS 值低于 40 所占的时间百分比；40 < BIS <60 为 BIS 值在 40 和 60 之间的时间百分比；BIS >60 为 BIS 值高于 60 所占的时间百分比；平均 BIS 为 BIS 的平均值；SR 为爆发抑制比，SR 发生指 SR >10% 持续超过 1 分钟；MDPE 指执行误差的中位数或偏差；MDAPE 指执行误差的绝对中位数或不精确性；搏动指执行误差的个体差异；总体评分指系统的总体表现。
因为只有这些患者具有电子记录的血流动力学数据，才能记录这些事件的发生。所有患者都接受单纯全身麻醉。

比起人工组，双环组气管插管的平均时间较短（表4和图7）。该分析结果是由人工组的70例患者和双环组的72例患者得到，因为其他患者由于低温（n=8）、肌肉松弛药物残余作用（n=5）或计划在重症监护室拔管（n=12）而需要保留气管插管。

接受全麻复合区域麻醉的患者亚组，在双环组患者对雷米芬太尼的需要量呈非显著的下降[0.22±0.7, 0.20(0.16~0.27) vs 0.19±0.7, 0.20(0.16~0.23) μg·kg⁻¹·min⁻¹, 全身麻醉 vs 全麻复合区域麻醉, P=0.52]。人工组患者对雷米芬太尼的需要量也显著下降[0.17±0.7, 0.16(0.11~0.21) vs 0.12±0.6, 0.10(0.07~0.16) μg·kg⁻¹·min⁻¹, 全身麻醉 vs 全麻复合区域麻醉, P=0.003]。

两组患者对肌肉松弛药、麻黄素、降压药物的需要量、失血量、林格液的输注量以及吗啡的用量

图5 双频指数维持40~60之间所占时间比的柱状图虚线和实线分别表示双环组和人工组的正态分布曲线

疼痛刺激前后两组患者的心率、收缩压和BIS值相似（图6）。该分析结果是由人工组的33例患者和双环组的31例患者在喉镜检查时以及人工组的44例患者和双环组的49例患者在手术切皮时得到的，

图6 疼痛刺激前以及刺激后5、10、15分钟双环组和人工组的血流动力学特征以及BIS值
补了药代动力学模型的缺陷。

开发控制器依据的假说：在没有伤害性刺激的情况下，闭环控制丙泊酚的输出可以使催眠维持一个持续稳定的水平（BIS 在 40 ~ 60），而术中的疼痛刺激可以激发皮层脑活动并因此使 BIS 升高。图 1、附录和表 1 对控制器进行了详细的描述。简单地说，本研究中的控制器测量并计算机误差（BIS），即 BIS 的设定值（BIS = 50）与测量值之间的差异。如果 BIS 不为 0，则控制器确定一个新的丙泊酚和（或）雷米芬太尼浓度。误差的大小决定哪种药物将被调节：如果 BIS 小，只需要改变雷米芬太尼的浓度；如果 BIS 较大，则两种药物的浓度都需要做出改变（表 1）。连续两次调控的最小间隔时间等于每种药物的峰效应时间加上额外的 60 秒，雷米芬太尼 [14] 的时间间隔较丙泊酚短 [13]，因此，雷米芬太尼的调节次数更多。

GS 被选作评估控制器性能的主要指标。以前该评分也被使用过 [5, 6, 22]，但其可靠性并未得到广泛验证，这使得我们的主要观察指标受到了批评。然而，自动控制的特定目标是为了将可控变量的平均值维持在限定范围内，并且波动较小 [32]。GS 综合了这些标准，它在不准确性 MDAPE、摆动 [16] 与 BIS 值在 40 ~ 60 的时间所占的比例之间做出了权衡。MDAPE 代表了精确性或围绕设定值（BIS = 50）的波动情况。摆动测量的是 PE 的个体差异，但 BIS 值在预设范围（40 ~ 60）之外时摆动也可以很低（或极好）。因此，不能单独用摆动去评估控制器的性能，而 GS 可以避免错误的解释 [5]。最终，GS、MDAPE、BIS 在 40 ~ 60 之间（图 4）所占的时间比例 BIS < 40、BIS < 60 或者 SR 发生情况一致说明利用闭环控制器可以更好地控制 BIS。控制器减少了与 SR 发生相关的过深麻醉（BIS < 40）（表 4）。除了催眠药物过量，很多因素可以导致 SR 发生，如代谢和（或）灌注压的改变、低体温及低氧血症。等电位 EEG 的出现会增加危重患者的死亡率 [33, 34]，而 SR 与过深麻醉有关，已经有人提出它是远期死亡率增加的一个原因 [35, 38]。

仅部分患者记录下对伤害性刺激（喉镜检查或手术切皮）的血流动力学反应，而闭环组和人工组的结果相似，提示闭环输注可以满意地控制心率和动脉血压。但是，在缺乏特异的、客观的临床征象或特异性镇痛监测的情况下，我们不能确定雷米芬太尼的输注的合理性。
我们的研究也显示出控制器的一些局限性。首先是诱导阶段的持续时间，多在 3.4 ~ 6.1 分钟（四分位数值）之间。这样一个时间对于低危患者来说显然太长了，这与每次丙泊酚和雷米芬太尼浓度调节的时间延搁有关（附录）。对控制的改进时，应该在低危患者中减少这种时间的延搁。第二是局限性是雷米芬太尼的用量。两组患者丙泊酚的用量相似，但双环组中雷米芬太尼的用量较大（表 3 和表 4，图 3）。在诱导和维持阶段，双环组的雷米芬太尼效应部位浓度较高。我们计划改进控制器来持续地对雷米芬太尼做出限制，以减少雷米芬太尼的用量。与其他研究者所使用的药物或药物浓度是比较困难的，因为研究人群不同，在本研究中，有 1/3 接受的是大型手术，15% 接受的是全麻复合区域麻醉。如果雷米芬太尼用量过大会增加不良事件如血流动力学紊乱或知晓的发生，可被认为是小的。我们的试验不能确定知晓的发生率。第三个局限性是中途退出试验的患者数目（图 2）。有些是由于研究人员在实施试验过程中的错误，如入组了有神经系统疾病的患者，药物稀释方面的问题或者用药错误。与记录系统故障和计算机故障不同，长时间的 BIS 缺陷不能归咎于我们系统的问题。这些病例通过 Windows XP 操作系统的普通个人电脑的原理装置作出说明。

其他方面也须论述。首先，我们将诱导期规定为从药物输注开始到 BIS 值 ≤ 60 达 30 秒是为了避免出现诸如语言交流消失的临床征象时产生人为误差，以及由于反复刺激患者而对镇静深度的影响。30 秒的期限是随意设定的，通常是通常可以看到在最初的突然下降后，BIS 值会在 50 上下波动。期限短可能不够。第二，我们的研究是非盲法的多中心研究，有很多研究者。研究员数目较大有其长处，这样可以使发明者以外的更多人接触到控制器。但是，这也是一种缺点，因为研究者的日常工作多了几项患者管理方面的内容，这会使组间的对比不精确，尤其体现在讨论血流动力学情况、是否需要补液或给予血管活性药物，以及拔管的问题上。第三，我们将我们的控制器与基于麻醉医生的调控进行比较；这种方法学已用于研究 BIS – 丙泊酚闭环控制器 [5~7,23]。在有双控制器的情况下，应该提出其他的方法来明确药物之间的相互作用，如在 BIS 指导下，将丙泊酚 – 雷米芬太尼闭环控制器与单闭环输注丙泊酚联合以不同目标浓度持续不变输注雷米芬太尼做比较，或者与以不同目标浓度持续不变输注丙泊酚联合一个闭环雷米芬太尼控制器做比较。本研究的目的是将现在作为一种新的药物输注方式的闭环控制器与目前工作中使用的人工 TCI 丙泊酚和雷米芬太尼做比较。

总之，基于脑电活动的 BIS 监测下，可进行计算机控制丙泊酚和雷米芬太尼的输注；但应用与更大样本患者前需要进一步改进控制器，以使自动输注控成为一项有用的工具。

附 录

两组患者利用 Infusion Toolbox95 4.11 版软件靶控输注 (TCI) 静脉麻醉[15]。Infusion Toolbox95 用 Visual Smalltalk 编程，后者是一种面向对象的程序设计语言（Visual Age for Smalltalk 5.5 版，IBM, Armonk, NY）。该软件能够计算丙泊酚和雷米芬太尼的血浆及效应部位浓度 (Ce)。本研究分别选用了 Schnider 等[13]关于丙泊酚和 Minto 等[14]关于雷米芬太尼的群体药代动力学数据。软件控制两个 Asena GH 输注泵（(Alaris Medical UK Ltd., Boston, Hampshire, 英国）。双频指数 (BIS) 电极被放置在患者前额，并与一个 A-2000 XP (3.11 版) BIS 监测仪（Covidien, Mansfield, MA）或一个 BIS 模块 (Datex-OhmedaTM S/5TM, 赫尔辛基, 芬兰) 连接。一台装有 Windows98 或者 XP 操作系统的个人电脑 (Microsoft, Redmond, WA) 提供用户界面，每 5 秒储存一次 BIS 值、信号质量指数、肌电 (EMG) 表现和抑制比的数据，通过一个 RS232 接口，控制监测仪与两个输注泵之间的信息传递。

1. 控制器的主要组成

控制器具有一连串的结构，包括两个比例 - 积分 - 微分 (PID) 控制器，每个有其自身的 PID 运算法则，并有一套相互作用规则 (图 1)。控制器有 6 个部分组成：

- 计算 BIS (设定值 50 与实测 BIS 值之差)；它促使控制器进行调节直到 BIS 达到目标水平，即 50。该参数只有在监测仪的信号质量指数超过 50% 时才能被计算出来。通过误差的大小、符号以及实际的浓度计算出新的药物浓度。控制器根据误差的符号 (正或负) 升高或降低药物浓度。误差的大小决定了哪种药物将被调节。如果 BIS 小，只需要改变
雷米芬太尼的浓度；如果 BIS 超过了一定的阈值，则两种药物的浓度都需要做出改变。最终，两种药物将通过控制器持续地受到调节。比起丙泊酚，雷米芬太尼的调节时间间隔较短，触发阈值较低。因此，控制器对雷米芬太尼更为敏感。

- 回馈放大 (AFB)：已经为每种药物和每个 BIS 的误差确定了一个特定的 AFB。利用一个积分控制器，通过以下公式得到一个新的目标值：

 \[\text{新的目标浓度} = \text{目标浓度} \times \frac{\text{AFB BIS}}{1 + \frac{(\text{BIS})}{K}} \]

 控制器不断地调整目标浓度直到 BIS 为 0。用当前的目标值计算出新的目标值，它由之前的 BIS 决定。实际上，控制器随时间计算出瞬时误差的总和 (在维持阶段，每 5 秒对误差进行积分)，给复累积的偏移量，之前这些偏移量应该已经被校正。通过这些累积的误差计算出的新目标值为 PID 提供积分部分的操作。

表 1 给出了丙泊酚和雷米芬太尼的增益常数或 K 值；而这些值是由 Infusion Toolbox95 软件中的模拟器经验性地确定的。

- 丙泊酚和雷米芬太尼浓度调节的时间间歇是由之前的效应室浓度达到稳定所需要的时间决定的（图 1），后者由药代动力学模型给出。就某个患者而言，药代动力学给出的时间间隔是恒定的，它主要与年龄有关。丙泊酚的间隔时间为 96 秒 (20 岁) ~ 120 秒 (80 岁)，随年龄增长呈线性增加。雷米芬太尼的间隔时间是非线性的，为 80 秒 (20 岁) ~ 151 秒 (80 岁)。通过 Infusion Toolbox95 软件中的模拟器可以计算出雷米芬太尼的调节时间间隔 [15]。维持阶段，系统会额外地将该时间增加 60 秒。

- 前馈现象是 PID 算法的一个衍生物，包括丙泊酚和雷米芬太尼两方面的内容，根据前馈，系统每 5 秒做出一次预测，然后根据 BIS 做出一次浓度校正。在三种情况下会出现这种现象：① BIS > 62 (丙泊酚成分) 或 60 (雷米芬太尼成分)；② 10 秒内 BIS 增加超过 15 (丙泊酚成分) 或 10 (雷米芬太尼成分)；③ EMG 活动 > 37dB (丙泊酚成分) 或 35dB (雷米芬太尼成分)。

当 EMG > 42dB 持续 1 分钟时，上述现象消失，数值值与人为的假象有关。微分部分的操作会优先做出浓度调节的决定。此外，如果目前丙泊酚的浓度 < 1.3 μg/ml 或者目前雷米芬太尼的浓度 < 4ng/ml，系统会进行默认校正 (丙泊酚和雷米芬太尼分别为 1.3 μg/ml 和 4ng/ml) 以避免过小的或与临床无关的校正。诱导期间不进行微分操作。最后，在维持阶段，当 BIS 或 EMG 超过限制时，则要根据 AFB 对丙泊酚和雷米芬太尼的目标浓度做出更正。

- 丙泊酚和雷米芬太尼的相互作用规则：如果控制器连续超过 3 次增加雷米芬太尼的浓度，则丙泊酚的浓度也要增加。

- 安全装置：在控制器或 BIS 发生故障或者信号质量指数较低 (SQI < 50) 时，系统会自动地维持计算出的药物浓度。此外，维持阶段，丙泊酚和雷米芬太尼的最小和最大浓度 (默认值) 被分别设置在 1 ~ 5μg/ml 以及 3 ~ 12ng/ml。使用者可以无限制地调整这些数值。

2. 控制器的临床应用

所有研究者在使用 BIS 调节丙泊酚和雷米芬太尼方面都具有丰富的临床经验，他们都要在我们的研究中心接受为期两天的双闭环控制器的培训。使用者输入患者的人口统计学数据 (性别、年龄、体重和身高) 以及诱导时最初的丙泊酚目标浓度。控制器根据最初的丙泊酚浓度确定出初始雷米芬太尼浓度；如果丙泊酚的初始浓度 < 2.5μg/ml，则初始雷米芬太尼的目标浓度为 4ng/ml；如果丙泊酚的初始浓度在 2.5 ~ 2.9μg/ml，则初始雷米芬太尼的目标浓度为 5ng/ml；如果丙泊酚的初始浓度 > 2.9μg/ml，则初始雷米芬太尼的目标浓度为 6ng/ml。诱导期间不进行微分处理，前馈现象亦受到抑制。诱导阶段 (即 BIS ≤ 60 达 30 秒) 后，控制器自动转入维持阶段。手术过程中，如果有必要，使用者可以调节目标浓度或者在闭环和人工控制之间进行转换。

3. 控制器的小结

手术开始时，临床医生输入丙泊酚的初始效应位目标浓度 Ce_{prop} (1)，然后控制器设置一个雷米芬太尼的初始效应位目标浓度 Ce_{rem} (1)：

- 如果 Ce_{prop} (1) < 2.5 μg/ml，则 Ce_{rem} (1) = 4.0 ng/ml
- 如果 2.5 μg/ml < Ce_{prop} (1) < 2.9 μg/ml，则 Ce_{rem} (1) = 5.0 ng/ml
- 如果 Ce_{prop} (1) > 3.0 μg/ml，则 Ce_{rem} (1) = 6.0 ng/ml

以下公式用于得到新的浓度直到 BIS 为 0：

\[Ce_{rem} (k) = Ce_{rem} (k-1) \times \left[1 + \frac{(BIS)}{\text{K}_{prop}} \right] \]
法则 2 \(C_{\text{remi}} (m) = C_{\text{remi}} (m-1) [1 + \frac{1}{K_{\text{remi}}}] \)

\(C_{\text{prop}} (k) \) 和 \(C_{\text{remi}} (m) \) 是新的丙泊酚和雷米芬太尼目标浓度，\(C_{\text{prop}} (k-1) \) 和 \(C_{\text{remi}} (m-1) \) 是目前的 \(C_e \) 值，\(BIS_{\text{remi}} \) 是目前 \(BIS \) 值 50 之差。表 1 给出了根据 \(BIS_{\text{remi}} \) 得到的 \(K_{\text{prop}} \) 和 \(K_{\text{remi}} \) 值。

由药代动力学模型得到的前一个效应室浓度达到稳定后，就产生一个新的目标浓度。对于某个患者来说，药代动力学模型给出的时间间隔是恒定的。它主要取决于年龄。丙泊酚的间隔时间为 96 秒（20岁）~ 120秒（80岁），随年龄增长呈线性增加。雷米芬太尼的间隔时间是非线性的，为 80 秒（20岁）~ 151秒（80岁）。通过 Infusion Toolbox95 软件中的模拟器可以计算出雷米芬太尼的调节间隔时间。维持阶段，系统会额外地将该时间增加 60 秒。

但是，在以下情况下，由于有微分的处理，即使血浆和效应室浓度没有达到稳定状态，系统也会每 5 秒进行一次新的校正：
- \(BIS > 62 \)，则 \(C_{\text{prop}} (k) \) 被更新。
- \(BIS > 60 \)，则 \(C_{\text{remi}} (m) \) 被更新。
- \(BIS < 15 \)，则 \(C_{\text{prop}} (k) \) 被更新。
- \(BIS > 10 \)，则 \(C_{\text{remi}} (m) \) 被更新。
- \(EMG > 37 \text{dB} \) 且 \(EMG < 42 \text{dB} \)，则 \(C_{\text{prop}} (k) \) 被更新。
- \(EMG > 35 \text{dB} \) 且 \(EMG < 42 \text{dB} \)，则 \(C_{\text{remi}} (m) \) 被更新。

如果没有满足以上任何一条，则激活之前的操作或法则 1 和 2。在维持阶段，即诱导期（定义为从丙泊酚和雷米芬太尼输注开始到 \(BIS \) 低于 60 持续 30 秒）后药物输注结束，我们还为浓度调节间隔额外地加了 60 秒。此外，如果 \(C_{\text{remi}} \) 被连续调节了 3 次，则 \(C_{\text{prop}} \) 也会被自动调节一次。

参考文献

