DNA Testing for Malignant Hyperthermia: The Reality and the Dream

Stowell, Kathryn M. PhD

Anesthesia & Analgesia:
doi: 10.1213/ANE.0000000000000063
Pediatric Anesthesiology: Review Article
Continuing Medical Education

The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode. Diagnosis of MH using DNA was suggested as early as 1990 when the skeletal muscle ryanodine receptor gene (RYR1), and a single point mutation therein, was linked to MH susceptibility. In 1994, a single point mutation in the α 1 subunit of the dihydropyridine receptor gene (CACNA1S) was identified and also subsequently shown to be causative of MH. In the succeeding years, the number of identified mutations in RYR1 has grown, as has the number of potential susceptibility loci, although no other gene has yet been definitively associated with MH. In addition, it has become clear that MH is associated with either of these 2 genes (RYR1 and CACNA1S) in only 50% to 70% of affected families. While DNA testing for MH susceptibility has now become widespread, it still does not replace the in vitro contracture tests. Whole exome sequence analysis makes it potentially possible to identify all variants within human coding regions, but the complexity of the genome, the heterogeneity of MH, the limitations of bioinformatic tools, and the lack of precise genotype/phenotype correlations are all confounding factors. In addition, the requirement for demonstration of causality, by in vitro functional analysis, of any familial mutation currently precludes DNA-based diagnosis as the sole test for MH susceptibility. Nevertheless, familial DNA testing for MH susceptibility is now widespread although limited to a positive diagnosis and to those few mutations that have been functionally characterized. Identification of new susceptibility genes remains elusive. When new genes are identified, it will be the role of the biochemists, physiologists, and biophysicists to devise functional assays in appropriate systems. This will remain the bottleneck unless high throughput platforms can be designed for functional work. Analysis of entire genomes from several individuals simultaneously is a reality. DNA testing for MH, based on current criteria, remains the dream.

Author Information

From the Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.

Accepted for publication November 1, 2013.

Funding: Not applicable.

The author declares no conflicts of interest.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site.

Reprints will not be available from the author.

Address correspondence to Kathryn M. Stowell, PhD, Institute of Fundamental Science, Massey University, Private Bag 11–222, Palmerston North, New Zealand. Address e-mail to k.m.stowell@massey.ac.nz.

© 2014 International Anesthesia Research Society