Reducing HIV risk behavior of men who have sex with men through persuasive computing: results of the Men's INTernet Study-II

Rosser, BR Simona; Oakes, J Michaela; Konstan, Josephb; Hooper, Simonc; Horvath, Keith Ja; Danilenko, Gene Pa; Nygaard, Katherine Ea; Smolenski, Derek Ja

doi: 10.1097/QAD.0b013e32833c4ac7
Epidemiology and Social

Objective: The primary objective of this study was to develop and test a highly interactive Internet-based HIV prevention intervention for men who have sex with men (MSM). MSM remain the group at highest risk for HIV/AIDS in the United States and similar countries. As the Internet becomes popular for seeking sex, online interventions to reduce sexual risk are critical. Given previous studies, a secondary objective was to demonstrate that good retention is possible in online trials.

Design: A randomized controlled trial with 3-month, 6-month, 9-month, and 12-month follow-up design was employed.

Methods: In 2008, 650 participants were randomized to an online, interactive sexual risk reduction intervention or to a waitlist null control.

Results: Retention was 76–89% over 12 months. At 3-month follow-up, results showed a 16% reduction in reported unprotected anal intercourse risk among those in the treatment condition versus control [95% confidence interval (95% CI) of rate ratio: 0.70–1.01]. No meaningful differences were observed at 12-month follow-up.

Conclusion: Internet-based, persuasive computing programs hold promise as an effective new approach to HIV prevention for MSM, at least in the short term. Further, online trials can be conducted with acceptable retention provided strong retention protocols are employed. Four directions for future research are identified.

Author Information

aDivision of Epidemiology and Community Health, University of Minnesota School of Public Health, USA

bDepartment of Computer Science and Engineering, University of Minnesota Institute of Technology, Minneapolis, Minnesota, USA

cDepartment of Learning and Performance Systems, Penn State University College of Education, University Park, Pennsylvania, USA.

Received 8 December, 2009

Revised 12 May, 2010

Accepted 19 May, 2010

Correspondence to B.R. Simon Rosser, PhD, MPH, LP, HIV/STI Intervention and Prevention Studies, Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 South 2nd Street, Suite 300, Minneapolis, MN 55454, USA. Tel: +1 612 624 0358; fax: +1 612 624 0315; e-mail:

Article Outline

Men who have sex with men (MSM) remain the largest population infected with HIV in the United States [1]. Although early (offline) prevention efforts were effective in reducing the spread of HIV [2], there has been a reversal in safer sex practices since the mid-1990s [3], leading researchers to conclude that HIV prevention efforts for MSM in the United States have ‘faltered’ [4]. Reenergizing HIV prevention for MSM remains an urgent priority in the fight against HIV/AIDS [5].

Increased sexual risk taking and rising HIV rates among MSM have coincided with the broad adoption of the Internet as a way for MSM to meet sexual partners [6]. The Internet is now the largest venue where MSM meet sexual partners [7]. A meta-analysis of 14 studies from 1999 to 2005 reported a weighted mean estimate of 40% of MSM meeting their sex partners online [8]. However, the analysis is now dated; the range of estimates was large (23–99%) and highly dependent on the recruitment methods used [8].

Clinic studies have identified men who use the Internet to seek sex with men (MISM) as at higher risk for HIV/STIs (sexually transmitted infections) than other MSM [9]. Internet sex-seeking appears to increase risk through an increased number of partners [10], and therefore increased probability of sexual risk behavior [6,11]. Tracing STI outbreaks [12] and HIV transmission [13] through Internet-mediated liaisons is well documented.

Given the global reach of the World Wide Web, its accessibility, affordability, anonymity, and popularity for sex-seeking among MSM [14], Internet-based interventions hold exceptional promise to address the global pandemic of HIV among MSM if they can be shown to reduce unsafe sexual behavior. The long-term objective of this research is to develop Internet-based interventions strong enough to lower sexual risk behavior among MISM.

To date, three online interventions for adult MISM have been rigorously evaluated. These programs used tailored messaging to MISM entering relationships [15], visual stories to promote HIV testing and to reduce unsafe sex [16], and ‘gay’ avatars on a virtual cruise [17]. However, two of the trials [15,17] experienced attrition rates of 70–80%, preventing meaningful interpretation of results, whereas the third [16] did not attempt to measure behavior change. Thus, attrition in online interventions appears a major challenge.

Back to Top | Article Outline

Study description

The Men's INTernet Study-II (MINTS-II) is a randomized controlled trial (RCT) to test whether an Internet-based sexual health promotion intervention (Sexpulse) for MISM can reduce their unprotected anal intercourse. Participants completed the study during a 3-week period from December 2007 to January 2008 with 3-month, 6-month, 9-month, and 12-month follow-up surveys being sent in April, July, October, and January 2009, respectively.

Back to Top | Article Outline
Development of the intervention

Sexpulse was designed by a multidisciplinary team of health professionals, computer scientists, and e-learning specialists and developed by a leading e-learning development company. Extensive formative research was undertaken with 2716 MISM recruited online [11,18]. Key findings were that to be acceptable to the target population, online HIV prevention must be comprehensive, highly visual, and more sexually explicit than conventional prevention programs [18].

Our theoretical approach was grounded in the Sexual Health Model approach to HIV prevention [19] and principles from e-learning [20]. The Sexual Health Model posits that sexually healthy persons are more likely to make sexually healthy decisions, while e-learning stresses that to be effective, online interventions should be user-oriented, engaging, informative, and fun. For our starting point, we adapted a seminar-based sexual health curriculum for MSM into an online intervention [21].

From the perspective of persuasive computing [22], we consider the role of computers as tools (persuasion through customization and tunneling), media (simulation and experience), and social actors (roles). We paid specific attention to human–computer interaction [23] and user experience, using testing to remove distractions that would lessen participant engagement with the intervention. The intervention was modular with extensive user flexibility to maintain the feeling of control typical in both graphical user interfaces and Web interaction. The modules borrowed most directly from computer games, which have a long history of presenting persuasion opportunities [24], but also incorporated video segments, interactive text, and animations.

Module prototypes were developed using a multi-iteration design and development process. Prototypes were reviewed internally by experts, tested with MISM in a usability laboratory, and refined as needed.

Back to Top | Article Outline
Intervention description

In translating the curriculum into an online experience, the didactic approach was dropped in favor of active learning. From the participant's perspective, the overall goal of the intervention was presented as building a personal ‘portrait of sexual health,’ with each module yielding a portrait piece. Module examples include a ‘hot sex’ calculator, which calculates the odds of great sex while demonstrating decision making in dating; a virtual gym where men can explore body image concerns common in this population; an online chat simulation where users can explore ambiguity and evasion; and a reflective journey where participants can identify and graph the effects of past successes and disappointments, identify long-term goals, shed secrets, and deepen spirituality. These modules were supplemented by virtual peers who contributed their experiences from diverse perspectives, reinforcements in the form of 15-s cartoons, polls where participants could compare their answers with those of other participants, and FAQs where learners could seek specific information. Two modules employed personal video vignettes of three MSM living with HIV and three HIV-negative MSM discussing ways they avoid transmitting/acquiring HIV. Other modules covered mental and emotional health, physical health, intimacy, relationships, sexuality, and spirituality aspects of the Sexual Health Model, with each module addressing implications for safer sex, commitment to reducing risk, and long-term sexual health.

Back to Top | Article Outline


Participant recruitment procedures

Banner advertisements placed on two of the nation's largest gay Web sites and e-mails to participants from previous research connected MISM to the study Web page (see Fig. 1). Eligibility criteria included being male, 18 years or older, and a US resident, with a recent history of engaging in unprotected anal intercourse with at least one other man. In addition, potential participants were informed that they would need to be comfortable viewing sexually explicit materials online, be prepared to complete all online activities within 7 days, and be willing to provide an e-mail address and phone number to maintain contact. All study protocols were approved by our institution's review board.

Back to Top | Article Outline
Strategies to improve retention

High attrition in prior Internet-based HIV prevention trials was a concern [15–17]; hence, we focused on strategies to improve participant retention. Prior research identified time constraints and inadequate compensation as reasons MISM drop out of online studies. Therefore, compensation was set at $80 for completing the pretest, intervention, and posttest, with an additional $20–25 for completing each follow-up survey. This amount was deemed sufficient, but not coercive, for retention. Second, we employed a quarterly e-raffle with a monetary first prize of $150 to maintain study contact. Third, we developed a retention protocol where failure to return a survey triggered automated reminders, followed by personalized human contact by e-mail and then telephone.

Back to Top | Article Outline
Experimental conditions

All participants were invited to complete baseline, immediate postintervention, and 3-month, 6-month, 9-month, and 12-month follow-up surveys. A computer algorithm was used to randomly assign participants to one of two experimental conditions. Participants assigned to the null control condition completed an additional sexual health survey between baseline and postintervention assessments. Participants assigned to the intervention arm completed Sexpulse. Seven days after enrollment, participants who had not completed the null control survey or Sexpulse were sent two automated e-mail reminders 1 week apart, and were then contacted by telephone. At each follow-up, reminder e-mails were sent asking participants to return to the Web site to complete follow-up surveys.

Back to Top | Article Outline

The primary end point for the trial was the self-reported number of male partners with whom a participant engaged in unprotected anal intercourse with male partner (UAIMP) during the prior 90 days. In addition, the pretest survey assessed other dimensions of sexual health and collected demographic and Internet-use information. Immediate postintervention surveys assessed participants’ ratings of the intervention and qualitative comments on strengths and weaknesses of the intervention.

Back to Top | Article Outline


Figure 1 presents the enrollment, allocation, and retention results. A total of 650 MISM completed the baseline survey and were randomized to one of the experimental conditions. Retention over the 12-month study ranged between 76 and 99%.

Table 1 presents baseline characteristics and displays the covariate balance achieved through randomization. Except for a greater proportion of white men and modest differences in the distributions of age and educational attainment, randomization procedures appear to have balanced background characteristics across treatment conditions.

Table 2 presents the 3-month and 12-month change in HIV risk (UAIMP) in the last 3 months. We note the observed distribution of UAIMP was highly skewed– most men reported unprotected anal intercourse (UAI) with a few male partners, and a small number of men reported many such partners. Accordingly, it can be seen that 20% of participants in both experimental conditions did not report any risk change at the 3-month follow-up. Unfortunately, 12% in the control arm, compared to 10% in the treatment arm, reported more than one additional UAIMP at follow-up.

Another way to examine change is displayed in Fig. 2, which presents the adjusted mean UAIMP (and 95% confidence bands) by measurement period and experimental condition. Clearly, the point estimates within condition diverge after treatment, although confidence bands overlap. It is also important to note that self-reported risk declined in both the treatment and control conditions.

Table 3 presents results from negative binomial regression models, which estimate the treatment effect as a rate ratio. The upper panel presents treatment effects at 3 months, and the lower panel presents results at 12-month follow-up. Table 3 also presents results for all participants (i.e., full sample) and only those with some risk at baseline (i.e., nonzero risk), which could have been reduced by the intervention. Finally, both crude (i.e., unadjusted) and adjusted estimates are presented. The modeled results suggest that the Sexpulse program reduced short-term risk by an estimated 16.8% [95% confidence interval (95% CI): 0.69, 1.00; P = 0.05] in the unadjusted and by 15.6% (95% CI: 0.704, 1.013; P = 0.068) in the adjusted full sample models. Similar effects are observed in those who reported some baseline risk. By 12-month follow-up, no meaningful differences between treatment and control conditions are observed.

Analyses not presented show no evident impacts of ‘dose,’ operationalized as time spent completing Sexpulse. Further, the modeled estimates of Table 3 are robust to specification, such that adding or subtracting other potential confounders (e.g., HIV status) has no meaningful impact.

Back to Top | Article Outline


There were three major findings in this study. First, it is possible to develop a highly interactive Internet-based intervention program that MISM can use. Second, it is possible to conduct an Internet-based RCT and retain MISM over long periods (76–99% over 12 months). Third, among our participants who reported UAIMP at baseline, at 3 months those randomized to the intervention group reported a marginally significant decrease in the number of men with whom they engaged in risk behavior compared with the control group. This longer term follow-up showed no meaningful differences does not negate this promising fact. Taken together, the results suggest that the highly interactive online intervention can have at least short-term effects on reducing sexual risk behavior among MISM. Because reduction in UAIMP predicts lower HIV/STI incidence, the effects of the intervention carry considerable public health importance.

At least four directions for future research are implied by these results. First, our next steps include developing and testing methods to strengthen the long-term effects of the intervention. Second, we highlight the reduction in risk reported by participants in the control condition as a challenge (see Fig. 2). Although similar effects can be seen in offline RCTs (see, for example, Morin et al. [25]), research into panel conditioning and context effects is needed to better understand these results. Third, reach (getting people to the site) and retention (keeping people on site) have been identified as the two major challenges for Internet-delivered interventions for adolescents [26–28]. We hypothesize that these are also the major challenges for successful online interventions for MISM and recommend that researchers measure and report these in their evaluations. Finally, because online interventions can be accessed globally, next steps in this line of research include testing replicability, language equivalency, cultural appropriateness, and differences in effectiveness internationally.

Given the study design and the complexity of the intervention, it is not possible to identify the specific program components that led to behavior change in this study; a large and complicated factorial experiment is needed to definitively answer such questions. However, we speculate that the following factors contributed to the short-term effectiveness of our program: a Web site that was engaging, highly interactive, and fun, with a complexity of cognitive intervention tasks, based on the Sexual Health Model, informed by credible data, addressing topics identified by the target population as highly relevant, supported by personal testimonies, dominance of visual over verbal information including sexually explicit and realistic images, written in a real-world direct peer-to-peer style, and allowing participants to compare their responses to other peers. For enhancing retention, key features included a strong retention protocol, interactive engaging activities, appropriate visual learning elements, and for this population and content, frequent use of realistic sexually explicit images.

There were four principal limitations to the study. First, Internet-based studies cannot guarantee that participants are actually members of the target population. Strategies employed in this trial to reduce the likelihood of false respondents included recruitment from sites exclusively targeting the intended population, eligibility screening prior to explanation of the study, an extensive consent process, and a strong de-duplication and cross-validation protocol to ensure internal consistency and reliability of responses. Second, the choice of a null control means that change may have been due to access to content, time, and attention. The primary weakness of a null control is the potential for participant awareness that they did not receive the intervention. We considered a treatment-as-usual or a time-and-attention control option, but rejected the former as nonexistent and the latter as not easy to identify. Third, participants completed the study under highly controlled conditions– including being required to complete all modules and being compensated. We cannot generalize from this trial how MISM may use it in the real world. Fourth, HIV risk assessments use self-reports of sexual behavior, which may be prone to recall and/or social desirability biases [29]. Although computer-based methods, such as those used in this study, appear to lessen such biases [30], accurate recall requires correct reconstruction of details and sequence of events [31,32], with errors increasing for distantly occurring or high-frequency behaviors [33,34]. Although improbable, given the impossibility of blinding participants to treatment conditions, differential response-bias and related effects of attrition could explain results.

Our results have important implications for research and practice of HIV prevention, specifically, and more broadly for e-Public Health. This study demonstrates that challenges encountered by other e-Public Health research teams, including high attrition, can be overcome. Further, using an RCT design, Internet-based interventions appear potentially useful for reducing risk behavior. Future research should focus on establishing the effectiveness of online interventions and then comparing the effectiveness of new approaches to existing methods.

Back to Top | Article Outline


This research was funded by the National Institutes of Mental Health (grant # 5R01-MH063688–05) and conducted under the oversight of the University of Minnesota Institutional Review Board (#0405S59661). The team thanks Dr Willo Pequegnat, at the National Institute of Mental Health, Office on AIDS Research, for her leadership in promoting Internet-based approaches to HIV prevention. We acknowledge with deep gratitude our coinvestigators and consultants, Drs Michael Allen, Walter Bockting, Eli Coleman, Gary Remafedi, Michael W. Ross, and Brian Zamboni who provided invaluable contributions during the formative phases of this research; our research staff, Masaki Utsumiya, Curt Naumann, and Kyle Feiner who implemented the study; and our Community Advisory Board. Allen Interactions, Inc. programmed the intervention, with Mr Edmond Manning the lead instructional designer.

B.R.S.P. is principal investigator of the MINTS-II study and also wrote the first draft of the introduction, methds, and discussion.

J.M.O. is lead methodologist and statistician for the study who designed the analysis and wrote the results section.

J.K. is the lead computer scientist for the study who oversaw the design and development of the intervention, its testing, and the testing and implementation of the online survey and methods. On this article he wrote the sections specific to computer science.

S.H. is the e-learning educational theorist who oversaw the software development process and led the formative research process, which informed the intervention.

K.J.H. is the coinvestigator who focused on the intervention's effectiveness, particularly on young MSM and on HIV-positive populations. He attended weekly meetings, advised substantially on what the intervention and survey should look like, and cowrote the introduction and discussion sections.

G.P.D. is the project coordinator for the study. In addition to implementing all aspects of the study and overseeing their day-to-day operation, he contributed substantially to the science of this study by proposing study of e-learning constructs. His doctoral dissertation, based on this trial, examines the effectiveness of different instructional scaffolding on the effectiveness of the intervention. On this article he wrote the section detailing e-learning practices.

K.E.N. conducted all the analyses for this study under the supervision of J.M.O. In this role she wrote the analysis section, conducted all analyses, and proposed some additional analyses (reported in this article) that helped contextualize these results.

D.S. is a postdoctoral fellow who has worked on the MINTS-II study for the last year, and in addition, took the lead in conducting analyses about order effects (as requested by reviewer 1).

We confirm that all authors participated in regular meetings overseeing the implementation of the study at a level appropriate for coauthorship and further contributed specifically to this article either by writing sections and/or by providing substantial comments to improve the manuscript.

Back to Top | Article Outline


1. Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report, 2006. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2008.
2. Stryker J, Coates TJ, De Carlo P, Haynes-Sanstad K, Shriver M, Makadon HJ. Prevention of HIV infection: looking back, looking ahead. JAMA 1995; 273:1134–1148.
3. Hall HI, Song R, Rhodes P, Prejean J, An Q, Lee LM, et al. Estimation of HIV incidence in the United States. JAMA 2008; 300:520–529.
4. Jaffe HW, Valdiserri RO, De Cock KM. The re-emerging HIV/AIDS epidemic in men who have sex with men. JAMA 2007; 298:2412–2414.
5. Piot P. “2031 initiative.” Looking to the year 2031 and anticipating where we are likely to be in terms of the epidemic and the response. In: XVII International AIDS Conference; 3–8 August 2008; Mexico City, Mexico; 2008. p. WESS0201.
6. Rosser BRS, Miner MH, Bockting WO, Ross MW, Konstan J, Gurak L, et al. HIV risk and the Internet: results of the Men's INTernet Study (MINTS). AIDS Behav 2009; 13:746–756.
7. Rosser BRS, West W, Weinmeyer R. Are gay communities dying or just in transition? An International consultation from the Eighth AIDS Impact Conference examining structural change in gay communities. AIDS Care 2008; 20:588–595.
8. Liau A, Millett G, Marks G. Meta-analytic examination of online sex-seeking and sexual risk behavior among men who have sex with men. Sex Transm Dis 2006; 33:576–584.
9. McFarlane M, Bull SS, Rietmeijer CA. The Internet as a newly emerging risk environment for sexually transmitted diseases. JAMA 2000; 284:443–446.
10. Elford J, Bolding G, Sherr L. Seeking sex on the Internet and sexual risk behaviour among gay men using London gyms. J Acquir Immune Defic Syndr 2001; 15:1409–1415.
11. Rosser BRS, Oakes JM, Horvath KJ, Konstan JA, Danilenko GP, Peterson JL. HIV sexual risk behavior by men who use the Internet to seek sex with men: results of the Men's INTernet Sex Study-II (MINTS-II). AIDS Behav 2009; 13:488–498.
12. Klausner JD, Wolf W, Fischer-Ponce L, Zolt I, Katz MH. Tracing a syphilis outbreak through cyberspace. JAMA 2000; 284:447–449.
13. Tashima K, Alt EN, Harwell JI, Fiebich-Perez DK, Flanigan TP. Internet sex-seeking leads to acute HIV infection: A report of two cases. Int J STD AIDS 2003; 14:285–286.
14. Chiasson MA, Parsons JT, Tesoriero JM, Carr P, Hirshfield S, Remein RH. HIV behavioral research online. J Urban Health 2006; 83:73–85.
15. Davidovich U, de Wit JB, Stroebe W. The effect of an Internet intervention for promoting safe sex between steady male partners– results and methodological implications of a longitudinal randomized controlled trial online. In: International AIDS Conference; July 11–16 2004; Bangkok, Thailand; 2004. p. WePeC6115.
16. Bowen AM, Horvath KJ, Williams ML. A randomized control trial of Internet-delivered HIV prevention targeting rural MSM. Health Educ Res 2007; 22:120–127.
17. Kok G, Harterink P, Vriens P, De Zwart O, Hospers HJ. The Gay Cruise: developing a theory- and evidence-based Internet HIV-prevention intervention. Sex Res Social Policy 2006; 3:52–67.
18. Hooper S, Rosser BRS, Horvath KJ, Oakes JM, Danilenko G. Men's INTernet Sex II (MINTS-II) Team. An online needs assessment of a virtual community: what men who use the Internet to seek sex with men want in Internet-based HIV prevention. AIDS Behav 2008; 12:867–875.
19. Robinson BE, Bockting WO, Rosser BRS, Rugg DL, Miner M, Coleman E. A sexological approach to HIV prevention: the sexual health model. Health Educ Res 2002; 17:43–57.
20. Allen M. Michael Allen's guide to e-learning: building interactive, fun and effective learning programs for any company. Hoboken, NJ: John Wiley & Sons; 2003.
21. Rosser BRS, Bockting WO, Rugg DL, Robinson BE, Ross MW, Bauer GL, et al. A randomized controlled intervention trial of a sexual health approach to long-term HIV risk reduction for men who have sex with men: effects of the intervention on unsafe sexual behavior. AIDS Educ Prev 2002; 14(Supplement A):59–61.
22. Fogg BJ. Persuasive technology: using computers to change what we think and do. San Francisco, CA: Morgan Kaufmann; 2003.
23. Preece J, Rogers Y, Sharp H, Benyon D, Holland S, Carey T. Human-computer interaction. Wokingham, England: Addison Wesley; 1994.
24. Fogg BJ. Persuasive technology: using computers to change what we think and do. San Francisco, CA: Morgan Kaufmann; 2002.
25. Morin S, Shade SB, Steward WT, Carrico AW, Remein RH, Rothsetin C, et al. A behavioral intervention reduces HIV transmission risk by promoting sustained serosorting practices among HIV-infected men who have sex with men. J Acquir Immune Defic Syndr 2008; 49:544–551.
26. Brouwer W, Oenema A, Crutzen R, de Nooijer J, De Vries NK, Brug J. An exploration of factors related to dissemination of and exposure to Internet-based behavior change interventions aimed at adults: a Delphi study approach. J Med Internet Res 2008; 10:e10.
27. Crutzen R, de Nooijer J, Brouwer W, Oenema A, Brug J, de Vries NK. Internet-delivered interventions aimed at adolescents: a Delphi study on dissemination and exposure. Health Educ Res 2008; 23:427–439.
28. Schroder KEE, Carey MP, Vanable PA. Methodological challenges in research on sexual risk behavior: III. Response to commentary. Ann Behav Med 2003; 29:96–99.
29. Schroder KEE, Carey MP, Vanable PA. Methodological challenges in research on sexual risk behavior: II. Accuracy of self-reports. Ann Behav Med 2003; 26:104–123.
30. Turner CF, Ku L, Rogers SM, Lindberg LD, Pleck JH, Sonenstein FL. Adolescent sexual behavior, drug use, and violence: Increased reporting with computer survey technology. Science 1998; 280:867–873.
31. Thompson CP, Skowronski JJ, Larsen SF, Betz A. Autobiographical memory: remembering what and remembering when. Mahwah, NJ: Lawrence Erlbaum Associates; 1996.
32. Feldman-Barrett L, Barret DJ. An introduction to computerized experience sampling in psychology. Soc Sci Comput Rev 2001; 19:175–185.
33. Croyle R, Loftus EF. Concordance between self-report questionnaires and coital diaries for women with sexually transmitted infections. In: Bancroft J, editor. Researching sexual behavior. Bloomington, IN: Indiana University Press; 1997. pp. 237–249.
34. Downey L, Ryan R, Roffman R, Kulich M. How could I forget? Inaccurate memories of sexually intimate moments. J Sex Res 1995; 32:177–191.

gay men; HIV prevention; Internet; men who have sex with men; sex education

© 2010 Lippincott Williams & Wilkins, Inc.