Share this article on:

Cost-effectiveness of point-of-care viral load monitoring of antiretroviral therapy in resource-limited settings: mathematical modelling study

Estill, Jannea; Egger, Matthiasa; Blaser, Nelloa; Vizcaya, Luisa Salazara; Garone, Danielab; Wood, Robinc; Campbell, Jenniferd; Hallett, Timothy B.e; Keiser, Oliviaafor IeDEA Southern Africa

doi: 10.1097/QAD.0b013e328360a4e5
Epidemiology and Social

Background: Monitoring of HIV viral load in patients on combination antiretroviral therapy (ART) is not generally available in resource-limited settings. We examined the cost-effectiveness of qualitative point-of-care viral load tests (POC-VL) in sub-Saharan Africa.

Design: Mathematical model based on longitudinal data from the Gugulethu and Khayelitsha township ART programmes in Cape Town, South Africa.

Methods: Cohorts of patients on ART monitored by POC-VL, CD4 cell count or clinically were simulated. Scenario A considered the more accurate detection of treatment failure with POC-VL only, and scenario B also considered the effect on HIV transmission. Scenario C further assumed that the risk of virologic failure is halved with POC-VL due to improved adherence. We estimated the change in costs per quality-adjusted life-year gained (incremental cost-effectiveness ratios, ICERs) of POC-VL compared with CD4 and clinical monitoring.

Results: POC-VL tests with detection limits less than 1000 copies/ml increased costs due to unnecessary switches to second-line ART, without improving survival. Assuming POC-VL unit costs between US$5 and US$20 and detection limits between 1000 and 10 000 copies/ml, the ICER of POC-VL was US$4010–US$9230 compared with clinical and US$5960–US$25540 compared with CD4 cell count monitoring. In Scenario B, the corresponding ICERs were US$2450–US$5830 and US$2230–US$10380. In Scenario C, the ICER ranged between US$960 and US$2500 compared with clinical monitoring and between cost-saving and US$2460 compared with CD4 monitoring.

Conclusion: The cost-effectiveness of POC-VL for monitoring ART is improved by a higher detection limit, by taking the reduction in new HIV infections into account and assuming that failure of first-line ART is reduced due to targeted adherence counselling.

aInstitute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland

bKhayelitsha ART Programme, Médecins Sans Frontières

cDesmond Tutu HIV Centre, Institute for Infectious Disease & Molecular Medicine, University of Cape Town, South Africa

dClinton Health Access Initiative, Boston, Massachusetts, USA

eDepartment of Infectious Disease Epidemiology, Imperial College London, London, UK.

Correspondence to Janne Estill, Institute of Social and Preventive Medicine (ISPM), University of Bern, Finkenhubelweg 11, CH-3012 Bern, Switzerland. Tel: +41 31 631 35 15; e-mail:

Received 6 October, 2012

Revised 11 February, 2013

Accepted 26 February, 2013

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Website (

© 2013 Lippincott Williams & Wilkins, Inc.