AIDS

Skip Navigation LinksHome > March 8, 2002 - Volume 16 - Issue 4 > Genotypic analysis of plasma HIV-1 RNA after influenza vacci...
AIDS:
Basic Science: Concise Communication

Genotypic analysis of plasma HIV-1 RNA after influenza vaccination of patients with previously undetectable viral loads

Kolber, Michael A.a; Gabr, Abdel H.a; De La Rosa, Abeld,e; Glock, Jonathan A.d,f; Jayaweera, Dushyanthaa; Miller, Nancimaeb; Dickinson, Gordon M.a,c

Collapse Box

Abstract

Objective: In this study we evaluated the possibility that plasma viral load elevations secondary to influenza vaccination in HIV-1-seropositive individuals with previously undetectable viral loads (< 200 copies/ml) could develop resistance-bearing mutations in the viral reverse transcriptase (RT) and protease regions.

Methods: Thirty-four patients with undetectable viral burdens on highly active antiretroviral therapy (HAART) were evaluated for elevations in plasma viral load 2 and 4 weeks post-influenza vaccination. Plasma from patients whose viral load increased after vaccination was subject to genotypic resistance analysis by the line probe assay (LiPA) to determine whether primary resistance-bearing mutations developed during this period and at follow-up. Stored plasma was used to evaluate whether RT or protease mutations existed pre-vaccination.

Results: Seven out of 34 patients were found to experience elevations in their viral load after influenza vaccination. Two of the patients revealed evidence of primary RT or protease mutations not demonstrated in earlier pre-vaccination samples. One patient failed therapy after vaccination, and one patient revealed post-vaccination viral load elevations that eventually led to the progressive development of primary zidovudine mutations.

Conclusion: Evidence is presented that supports the contention that a small subset of patients who experience viral load elevations after influenza vaccination can develop mutational changes in the RT region of the viral genome either acutely or after a failure of the viral load to return to undetectable levels.

© 2002 Lippincott Williams & Wilkins, Inc.

Login

Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.