Skip Navigation LinksHome > July 2004 - Volume 36 - Issue 7 > Accuracy of SRM and Power Tap Power Monitoring Systems for B...
Medicine & Science in Sports & Exercise:
APPLIED SCIENCES: Physical Fitness and Performance

Accuracy of SRM and Power Tap Power Monitoring Systems for Bicycling


Collapse Box


GARDNER, A. S., S. STEPHENS, D. T. MARTIN, E. LAWTON, H. LEE, and D. JENKINS. Accuracy of SRM and Power Tap Power Monitoring Systems for Bicycling. Med. Sci. Sports Exerc., Vol. 36, No. 7, pp. 1252–1258, 2004.

Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions.

Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50–1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21°C) and time (1 h at ~300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride.

Results: The mean error scores for SRM and PT factory calibration over a range of 50–1000 W were 2.3 ± 4.9% and −2.5 ± 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (−0.8 ± 1.7%), and follow-up testing of all PT units confirmed these findings (−2.7 ± 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however, power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT.

Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.

©2004The American College of Sports Medicine


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us