Skip Navigation LinksHome > March 2004 - Volume 36 - Issue 3 > Exercise and Hypertension
Medicine & Science in Sports & Exercise:
Special Communications

Exercise and Hypertension

This pronouncement was written for the American College of Sports Medicine by; Pescatello, Linda S. Ph.D., FACSM, (Co-Chair); Franklin, Barry A. Ph.D., FACSM, (Co-Chair); Fagard, Robert M.D., Ph.D. FACSM; Farquhar, William B. Ph.D.; Kelley, George A. D.A., FACSM; Ray, Chester A. Ph.D., FACSM

Free Access
Back to Top | Article Outline

SUMMARY

Hypertension (HTN), one of the most common medical disorders, is associated with an increased incidence of all-cause and cardiovascular disease (CVD) mortality. Lifestyle modifications are advocated for the prevention, treatment, and control of HTN, with exercise being an integral component. Exercise programs that primarily involve endurance activity prevent the development of HTN and lower blood pressure (BP) in adults with normal BP and those with HTN. The BP lowering effects of exercise are most pronounced in people with HTN who engage in endurance exercise with BP decreasing approximately 5–7 mm Hg after an isolated exercise session (acute) or following exercise training (chronic). Moreover, BP is reduced for up to 22 h after an endurance exercise bout (e.g., postexercise hypotension), with the greatest decreases among those with the highest baseline BP.

The proposed mechanisms for the BP lowering effects of exercise include neurohumoral, vascular, and structural adaptations. Decreases in catecholamines and total peripheral resistance, improved insulin sensitivity, and alterations in vasodilators and vasoconstrictors are some of the postulated explanations for the antihypertensive effects of exercise. Emerging data suggest genetic links to the BP reductions associated with acute and chronic endurance exercise. Nonetheless, definitive conclusions regarding the mechanisms for the BP reductions following endurance exercise cannot be made at this time.

Individuals with controlled HTN and no CVD or renal complications may participate in an exercise program or competitive athletics, but should be evaluated, treated, and monitored closely. Preliminary peak or symptom-limited exercise testing may be warranted, especially for men over 45 and women over 55 yr planning a vigorous exercise program (i.e., ≥ 60% V̇O2R, oxygen uptake reserve). In the interim, while formal evaluation and management are taking place, it is reasonable for the majority of patients to begin moderate intensity exercise training (40–<60% V̇O2R) such as walking. When pharmacologic therapy is indicated in physically active people it should, ideally: a) lower BP at rest and during exertion; b) decrease total peripheral resistance; and, c) not adversely affect exercise capacity. For these reasons, angiotensin converting enzyme (ACE) inhibitors (or angiotensin II receptor blockers in case of ACE inhibitor intolerance) and calcium channel blockers are currently the drugs of choice for recreational exercisers and athletes who have HTN.

Exercise remains a cornerstone therapy for the primary prevention, treatment, and control of HTN. The optimal training frequency, intensity, time, and type (FITT) need to be better defined to optimize the BP lowering capacities of exercise, particularly in children, women, older adults, and certain ethnic groups. Based upon the current evidence, the following exercise prescription is recommended for those with high BP:

Frequency: on most, preferably all, days of the week

Intensity: moderate-intensity (40–<60% of V̇O2R)

Time: ≥ 30 min of continuous or accumulated physical activity per day

Type: primarily endurance physical activity supplemented by resistance exercise

Back to Top | Article Outline

INTRODUCTION

Since the 1970s, significant technological and pharmacotherapeutic advances have been made in the treatment and control of cardiovascular disease (CVD) and its associated risk factors. Yet, hypertension (HTN) remains a major public health problem in the United States, with 58.4 million (28.7%) Americans aged 18 yr or older having HTN (systolic blood pressure [SBP] ≥ 140 and/or diastolic blood pressure [DBP] ≥ 90 mm Hg) (11,39,107,137). HTN prevalence is increasing whereas awareness of the condition and control rates is suboptimal (39,107,137). The positive relationship between CVD risk and blood pressure (BP) occurs with a BP as low as 115/75 mm Hg and doubles for each 20/10-mm Hg increase. A person with normal BP at 55 yr of age has a 90% lifetime risk of developing HTN (264). The BP classification of “prehypertension” (SBP 120–139 or DBP 80–89 mm Hg) has been introduced to stress the public health importance of reducing BP and preventing HTN via healthy lifestyle interventions for all people (39).

There are minimal cost and side effects associated with lifestyle interventions, and they interact favorably with other CVD risk factors. For these reasons, the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (39,137), the World Health Organization (WHO) (283), the European Society of Hypertension (61), and the National High Blood Pressure Education Program (271) recommend approaches such as regular physical activity for the prevention and treatment of HTN. Table 1 lists the WHO blood pressure classification scheme and Table 2 the treatment guidelines for HTN (61,137,283).

Table 1
Table 1
Image Tools
Table 2
Table 2
Image Tools

The purpose of this Position Stand is to present an evidence-based review of the current state of knowledge on exercise and HTN with specific reference to human studies and essential HTN. The categories of evidence presented are those outlined by the National Heart, Lung, and Blood Institute (191) (Table 3). Because of the wealth of information on the cardioprotective effects of regular physical activity, we focus on the BP benefits of exercise in this Position Stand. Other benefits such as those on blood lipids-lipoproteins, insulin sensitivity, and body composition are not addressed in this document. Additional objectives of this Position Stand are to: 1) discuss the value and limitations of graded exercise testing in predicting future HTN and CVD morbidity and mortality, 2) address the role of acute (immediate effects of one bout of exercise) and chronic (long-term effects of a training program) endurance and resistance exercise on BP, 3) present exercise prescription recommendations and special considerations for individuals with HTN, 4) describe potential physiologic mechanisms for the BP-lowering effects of acute and chronic exercise, and 5) summarize the current state of knowledge on exercise and HTN via an evidence based approach.

Table 3
Table 3
Image Tools
Back to Top | Article Outline

EPIDEMIOLOGY OF HYPERTENSION

Demographics

BP increases with age. SBP continues to increase throughout adult life, secondary to progressive arterial stiffening, whereas DBP plateaus in the sixth decade and decreases thereafter. Consequently, pulse pressure becomes increasingly greater with advancing age (142). In recent epidemiological studies, HTN was defined as SBP ≥ 140 and/or DBP ≥ 90 mm Hg, or being on antihypertensive treatment. The prevalence of HTN is estimated to be between 24 (30) and 29% (107) in the United States adult population. HTN increases with age and is higher among men than women at younger ages, but the reverse is true in older individuals. Isolated systolic HTN is rare before the age of 50 yr and becomes increasingly prevalent thereafter (142,245).

Back to Top | Article Outline
HTN and CVD Morbidity and Mortality

HTN is associated with an increased incidence of all-cause and CVD mortality, stroke, coronary heart disease, heart failure, peripheral arterial disease, and renal insufficiency. More recently, Framingham Heart Study investigators (263) reported participants with high normal BP (SBP 130–139 or DBP 85–89 mm Hg) had higher rates of cardiovascular events as compared with those with optimal levels (SBP < 120 and DBP < 80 mm Hg). An important recent finding is the escalating evidence pulse pressure is an independent predictor of CVD morbidity and mortality, particularly in older subjects (15,90,93). Older patients with isolated systolic HTN appear to be at particularly high CVD risk (246).

Early randomized controlled trials have demonstrated salutary effects of antihypertensive drug therapy in patients with elevated SBP and DBP (44). More recent trials have shown older patients with isolated systolic HTN also benefit from treatment (246). Drug therapy significantly reduced CVD mortality by 21% in patients with systolic-diastolic hypertension and by 18% in patients with isolated systolic hypertension. Risk reduction amounted to, respectively, 42% and 30% for fatal and nonfatal stroke, and 14% and 23% for coronary artery disease. It is not known whether BP reduction by lifestyle interventions would yield similar benefits regarding CVD events.

About 25% of patients with HTN in the clinic have normal BP by ambulatory monitoring or home assessment. The prognosis of white-coat HTN (or isolated clinic HTN) is better than that of sustained ambulatory HTN; however, it remains unclear whether the risk of white-coat HTN is similar to the risk of HTN in persons with normal BP in the clinic or with ambulatory monitoring (265).

Despite conclusive evidence antihypertensive therapy reduces the complications of HTN, only about half of all patients with HTN are under pharmacological treatment, and only a fraction of these have normal BP due to the insufficient implementation of contemporary guidelines (72,137,283). SBP appears to be more difficult to control than DBP.

Back to Top | Article Outline

EXERCISE BLOOD PRESSURE AND THE PREDICTION OF HYPERTENSION AND CVD MORBIDITY AND MORTALITY

Prediction of Future HTN

Accurate prediction of future HTN in persons with normal BP is important so that early preventive measures can be taken to potentially alter this outcome. Resting BP, family history of HTN, body mass index, and physical activity and fitness are generally accepted predictors of future HTN. Future HTN has also been reported to be associated with an exaggerated BP response during and/or after exercise.

In a population-based study of middle-aged normotensive men, Miyai et al. (181) reported a significant and independent threefold higher risk for incident HTN during a 4.7-yr follow-up period in those with a disproportionate exercise BP response. Contrasting results were reported by Manolio et al. (172) in a population-based sample of 18- to 30-yr-old men and women. Individuals with an exaggerated exercise BP response at baseline were 1.7 times more likely to develop HTN over the next 5 yr than were persons with a normal exercise BP response, but the association was no longer significant after multivariate regression analysis. In middle-aged normotensive subjects from the Framingham Offspring Study (241) who were followed for 8 yr after baseline exercise testing, an exaggerated DBP but not SBP response to exercise was a significant and independent predictor of HTN in men and women, with odds ratios of 4.2 and 2.2, respectively. Matthews et al. (176) compared 151 cases of physician-diagnosed HTN with 201 age-matched controls who were normotensive. In multiple regression analysis, those who developed HTN at follow-up were three times more likely to have had an exaggerated exercise BP response. Several studies examined BP at variable time intervals in the immediate recovery period after exercise testing and found a higher BP after acute exercise significantly predicted future HTN (49,241). The prognostic power of exercise BP was also observed in studies in children (166).

Current studies do not seem to justify the widespread use of exercise testing to predict future HTN because of a number of limitations including: exercise tests and the definition of an exaggerated BP response were not standardized across the various studies; confounding variables were not always adequately accounted for in the analyses; and noninvasive BP measurements during exercise have inherent limitations, particularly with regard to DBP. However, when exercise testing is performed for other reasons, BP measurements may provide useful prognostic information.

Back to Top | Article Outline
Evidence statement.

An abnormal or exaggerated exercise BP contributes to the prediction of future HTN in persons with normal BP. Evidence category C.

Back to Top | Article Outline
Prediction of CVD Complications

Few studies assessed the significance of exercise BP for mortality or the incidence of CVD events. In healthy men, the exercise-induced increase in SBP from baseline to 164 W during cycle ergometer exercise independently and significantly predicted mortality from CVD, non-CVD and total mortality (75), and submaximal SBP at a work load of 100 W, but not maximal SBP, contributed independently to the prediction of CVD mortality and myocardial infarction (186,187). In another study, maximal SBP during a progressive exercise test to volitional fatigue predicted all-cause and CVD mortality in men and women (159).

On the other hand, exercise BP did not significantly enhance the prognostic value of resting BP in hypertensive men (65), but exercise systemic vascular resistance added prognostic precision to vascular resistance at rest, most likely due to attenuated arterial dilatation during exercise as a result of structural vascular abnormalities in those with worse prognosis. The impaired vasodilation was not expressed in an abnormal rise in BP because of a blunted rise of cardiac output. The crucial role of cardiac output and cardiac function is highlighted by the fact exertional hypotension is associated with a worse prognosis in cardiac patients and in persons with chronic heart failure, probably due to left ventricular dysfunction (68,131,199).

In conclusion, the prognostic importance of exercise BP depends on the population studied. A worse prognosis is associated with a hypertensive response in healthy subjects and a hypotensive response in patients with CVD and/or heart failure, whereas the results may be variable in hypertensive patients depending on cardiac function and the associated cardiac output (66).

Back to Top | Article Outline
Evidence statement.

The prognostic value of exercise BP regarding CVD complications depends on the underlying clinical status and hemodynamic response and is therefore limited. Evidence category D.

Back to Top | Article Outline

EXERCISE AND BLOOD PRESSURE BENEFITS

Endurance Training (Chronic) Effects
Exercise training and the prevention of HTN.

The associations between various types of physical activity and the incidence of HTN have been assessed in a number of different populations. In male university alumni, Paffenbarger et al. (200,201) reported vigorous exercise in the postcollege years protected against future HTN. Total amount and intensity of baseline physical activity were inversely associated with the risk of future HTN in middle-aged Finnish men (101). In Japanese men, duration of walk-to-work and leisure-time physical activity was significantly associated with a reduction in the risk for incident HTN (119). In the Atherosclerosis Risk in Communities Study, the incidence of HTN was lower in white men in the highest quartile of leisure activity as compared with men in the least active quartile (205). In contrast, none of the studies in women observed significant and independent relationships between the level of physical activity and the risk of developing HTN (83,101,205). Moreover, physical activity was not associated with incident HTN in the only study in blacks (205).

Others have investigated relationships between measured physical fitness and incident HTN. Blair et al. (18) reported persons with low physical fitness had a relative risk of 1.5 for the development of HTN when compared with highly fit persons, after controlling for age, sex, body mass index, and BP. Sawada et al. (231) confirmed in Japanese men the relative risk of HTN, after adjusting for age, initial BP, body fat, and other confounders, was 1.9 times higher in the least fit compared with the most fit group.

Back to Top | Article Outline
Evidence statement.

Higher levels of physical activity and greater fitness at baseline are associated with a reduced incidence of HTN in white men, and these associations persist after appropriate multivariate analysis. Evidence category C. The few studies in women and the one study in black subjects did not show significant relationships; however, the paucity of data precludes definitive conclusions regarding the role of sex and ethnicity.

Back to Top | Article Outline
Exercise training in the treatment and management of HTN.

Many longitudinal studies have assessed the effect of aerobic training on BP in adults, but essential scientific methods have not always been followed (67). Inclusion of a control group or period is mandatory, because BP may decrease over time due to the regression to the mean and habituation to measurement conditions. Allocation to the active or control group or the order of the training and nontraining phases should be randomly determined. Therefore, only randomized controlled studies are considered for the current overview. All but a few investigations reported on resting BP; however, in most studies BP was not measured by a blinded observer or an automated device. Accordingly, data on ambulatory BP are of prime importance.

Back to Top | Article Outline
Resting BP.

After publication of the 1993 American College of Sports Medicine (ACSM) Position Stand on physical activity, fitness, and HTN (6), the effect of endurance training on resting BP has been addressed in a number of meta-analyses of randomized controlled trials (64,69–71,108,145–147,149–151,272). Most of the study participants were men, and the average age of the various study groups ranged from 18 to 79 yr (median ∼45 yr). Duration of training involved 4–52 wk (median ∼16 wk). Training frequency ranged from one to seven sessions per week, but about two-thirds of the training programs involved three weekly sessions. With few exceptions, each exercise session lasted from 30 to 60 min (median ∼40 min). Exercises included walking, jogging, and running in about two-thirds of the studies and cycling in about half; several studies applied other aerobic exercises. Average training intensity in the various groups ranged from ∼30 to 90% of maximal oxygen uptake (V̇O2max) reserve (V̇O2R). All meta-analyses concluded BP decreases significantly in response to exercise training. However, the effect of training on BP was quite variable among individual studies, which may reflect differences in baseline BP, demographic characteristics, characteristics of the training program, inadequate controls, and BP assessment limitations.

In recent meta-analyses, which included 29 (108), 44 (69,71), and 54 (272) randomized controlled trials irrespective of the baseline BP of the participants, the training-mediated decreases of SBP/DBP averaged 4.7/3.1 mm Hg (108), 3.4/2.4 mm Hg (69,71), and 3.8/2.8 mm Hg (272), respectively. In 16 of 68 study groups in which average baseline BP was in the hypertensive range (SBP ≥ 140 or DBP ≥ 90 mm Hg) (137,283), the weighted net BP decrease after adjustment for control observations and weighting for study size, was significant and averaged 7.4/5.8 mm Hg (71); the BP reduction was also significant and averaged 2.6/1.8 mm Hg in the 52 study groups in which baseline BP was normal, irrespective of antihypertensive therapy. Kelley et al. (149) found significantly greater absolute reductions in resting SBP/DBP in hypertensive (6/5 mm Hg) versus normotensive (2/1 mm Hg) adults; and when normotensive and hypertensive subjects followed the same training program, the BP decrease was greatest in the hypertensives (70). With regard to the characteristics of the training program, there were only minimal or no effects of exercise frequency, type, and duration of training on the BP response in these meta-analyses (71,108,146,149,272). Finally, it was concluded there was no influence of exercise intensity (71,108,272) or that a lower intensity was associated with a larger reduction in DBP (149).

Back to Top | Article Outline
Ambulatory BP.

Among randomized controlled trials, 11 studies applied ambulatory BP monitoring to assess the effect of exercise training (23,46,47,87,135,136,173,215, 255,260,275). Six reported average 24 h BP, nine average daytime BP from early morning to late evening, and four nighttime BP. Because earlier analyses based on controlled and uncontrolled studies found nighttime BP is either not affected or much less influenced by exercise training (70,209), the current (unpublished) analysis of the randomized controlled trials is based on daytime BP from nine studies and on 24-h BP in the three studies that did not report day ambulatory BP. Baseline SBP/DBP aver-aged 135/86 mm Hg. The exercise-induced weighted net reduction in BP was significant and averaged 3.0/3.2 mm Hg, respectively.

Back to Top | Article Outline
Exercise BP.

In eight randomized controlled trials (47,111,173,189,215,260,275,282), BP was measured during cycle ergometer exercise at a median work load of 100 W (range 60–140 W). BP was assessed during treadmill exercise at an energy expenditure of ∼4 metabolic equivalents (METs) in two other studies (22,190). Pretraining exercise SBP averaged 180 mm Hg and heart rate 124 bpm. The weighted net training-mediated decrease in SBP and heart rate were significant, corresponding to 7.0 mm Hg and 6.0 bpm, respectively.

Back to Top | Article Outline
Evidence statements.

Dynamic aerobic training reduces resting BP in individuals with normal BP and in those with HTN. Evidence category A The decrease in BP appears to be more pronounced in hypertensive than in normotensive subjects. Evidence category B Aerobic training also reduces ambulatory BP and BP measured at a fixed submaximal work load. Evidence category B Response differences among individual studies are incompletely explained by the characteristics of the exercise training programs, that is, frequency, intensity, time, and type. Evidence category B

Back to Top | Article Outline
Acute Endurance Effects (Postexercise Hypotension).

Krául and colleagues (163) were the first to report an immediate reduction in BP after dynamic exercise. Some 20 yr later, Fitzgerald (76) coincidentally discovered jogging generally reduced his elevated BP into normotensive ranges for 4–10 h after completing his run. Due to accumulating evidence of the immediate and sustained reductions in BP after a bout of endurance exercise, Kenney and Seals (153) termed the decrease in arterial BP below control levels after a session of dynamic exercise as postexercise hypotension (PEH).

PEH occurs in normotensive (41,77,84,85,89,112,144, 211,243) and hypertensive (16,28,40,80,81,102,112,115, 144,163,170,204,207,208,214,228,229,243,250,267,276) young, middle aged, and older white men and women, with the greatest BP reductions seen in those with HTN (153,209,252). When BP is taken casually in the laboratory, SBP and DBP are reduced an average of 15 and 4 mm Hg, respectively, from a mean preexercise value of 147/94 mm Hg for several hours after the exercise session (209). These acute exercise-mediated decreases in BP are clinically significant, offering many hypertensive individuals the health related benefit of having their BP transiently lowered during the day when BP is typically at its highest levels.

The initial ACSM Position Stand on exercise and HTN commented briefly on PEH due to limited information (6). At that time, the magnitude of PEH appeared to be less in the few studies using ambulatory BP monitoring compared with those using casual BP measurements, yet the smaller decreases in BP could be of greater clinical significance because ambulatory BP is a more valid prognostic indicator of CVD (265). In addition, ambulatory monitoring includes multiple, serial measurements that better reflect the BP a person maintains during activities of daily living. Moreover, this technology eliminates many of the problems associated with clinic determinations such as terminal digit preference, observer bias, and the white-coat phenomenon (232). For these reasons, scientists and clinicians were urged to integrate ambulatory monitoring into future studies examining PEH.

As suspected, more recent investigations using ambulatory BP monitoring showed the average day SBP reductions to be approximately 5 mm Hg or 40% less than those reported by casual assessment (6,106,271); however, the reductions in ambulatory DBP were similar to casual values among white adults with HTN (209). PEH has now been found to persist for up to 22 h after an exercise bout (228). The variable that makes the largest contribution to the change in BP after exercise appears to be the preexercise value (153,209,252). Apparently, exercise works best for those who are in greatest need of its BP-lowering capabilities; however, future work is required to better characterize those who benefit most from exercise as antihypertensive therapy.

Investigations designed to compare the influence of different components of the exercise prescription on PEH, i.e., type, duration, and intensity, are lacking. Limited data suggest the manifestation of PEH is independent of these factors. PEH is a low-threshold event, with BP reductions occurring with exercise durations as short as 3 min (163) and exercise intensities as low as 40% V̇O2max (207). Whether longer duration and/or more vigorous-intensity exercise would elicit PEH to a greater or lesser degree is unknown at this time. The immediacy by which PEH occurs suggests the hypotensive influence of dynamic exercise ascribed to endurance-training programs may be partially an acute phenomenon with the BP reductions accumulating as the training program continues (252).

Pescatello and Kulikowich (209) reviewed acute and chronic (exercise training) endurance exercise studies involving ambulatory BP monitoring to gain insight into why exercise does not lower BP in approximately 25% of individuals with HTN (106). The ambulatory BP monitoring exercise studies revealed important methodologic considerations that should be addressed in future research on PEH. These include: a large enough sample size to detect the smaller decreases in BP seen with ambulatory than casual BP monitoring, especially in persons with normal to high normal BP; integration of a baseline period to stabilize preexercise BP and a control session of rest to adjust for placebo effects; consistency in the timing of the BP measurements to account for diurnal variation; and multiple assessments of BP before experimentation, ideally with ambulatory BP monitoring, to account for the labile nature of HTN in the determination of BP status.

Back to Top | Article Outline
Evidence statement.

Dynamic exercise acutely reduces BP among people with HTN for a major portion of the daytime hours. Evidence category B Few data exist on modulators of the acute exercise BP response including various components of the exercise prescription, age, ethnicity, and sex; thus, definitive conclusions cannot be made at this time.

Back to Top | Article Outline
Resistance Exercise
Training effects (chronic concentric and eccentric exercise).

Randomized controlled trials examining the effects of chronic concentric and eccentric resistance training on resting BP in adults have resulted in conflicting findings (14,23,31,45,56,58,116,143,185,256,261). A recent meta-analysis that included 320 male and female subjects (182 exercise, 138 control) also examined the effects of chronic resistance training on resting SBP and DBP in normotensive and hypertensive adults (148). In general, the resistance training programs followed the guidelines recommended by the ACSM (9). Statistically significant decreases of approximately 3 mm Hg were found for both resting SBP and DBP across all BP categories as a result of progressive resistance training. These decreases were equivalent to reductions of approximately 2 and 4%, respectively, for resting SBP and DBP. Although these modest changes may not be important from a clinical standpoint, a reduction of as little as 3 mm Hg in average population SBP has been estimated to reduce coronary heart disease by 5–9%, stroke by 8–14%, and all-cause mortality by 4% (247,271). The lack of available data on the effects of resistance training on ambulatory BP warrants further investigation because this may be more indicative of future CVD morbidity and mortality (265).

Back to Top | Article Outline
Evidence statement.

Resistance training performed according to ACSM guidelines reduces BP in normotensive and hypertensive adults. Evidence category B

Back to Top | Article Outline
Training effects (chronic static exercise).

To date, only two randomized controlled trials including adults with resting DBP between 80 and 90 mm Hg have examined the effects of static (isometric) exercise training on resting SBP and DBP (277). In one trial, resting SBP was reduced by an average of approximately 13 mm Hg and resting DBP by approximately 15 mm Hg as a result of four, 2-min static handgrip contractions performed 3 d·wk−1 for 8 wk. Contractions were performed at 30% of maximal effort with a 3-min rest period between contractions. A second trial, consisting of four contractions at 50% of maximum effort and held for 45 s with a 1-min rest between contractions, was performed 5 d·wk−1 for 5 wk. Statistically significant reductions of approximately 10 and 9 mm Hg were reported for resting SBP and DBP, respectively.

Two nonrandomized controlled trials have examined the effects of static exercise on resting SBP and DBP in normotensive and hypertensive adults (158,222). Kiveloff and Huber (158) reported significant reductions ranging from 16 to 43 mm Hg in resting SBP and 2 to 24 mm Hg in resting DBP as a result of 5–8 wk of static exercise (6-s contractions for all large muscle groups, 3× d−1, 5 d·wk−1) in hypertensive adults. No significant reductions were found for normotensives. Unfortunately, no control group data were reported for either normotensives or hypertensives (158). More recently, a well-controlled study by Ray and Carrasco (222) examined the effects of four, 3-min bouts of static handgrip exercise at 30% of maximal voluntary contraction performed 4× wk−1 for 5 wk in normotensive adults. Statistically significant reductions of approximately 5 mm Hg were reported for resting DBP with no statistically significant reductions observed for resting SBP. Given the paucity of studies available, additional randomized controlled trials are needed to examine the effects of static exercise on both resting and ambulatory SBP and DBP in adults.

Back to Top | Article Outline
Evidence statement.

The limited evidence available suggests static exercise reduces BP in adults with elevated BP. Evidence category C.

Back to Top | Article Outline
Acute effects of resistance exercise.

We are aware of no randomized or nonrandomized controlled trials that have examined the acute effects of resistance exercise on BP in adults. However, three observational studies have examined the acute effects of resistance exercise on BP (126,196,227). Hill et al. (126) investigated the effects of 11–18 min of resistance exercise on postexercise BP. A statistically significant decrease in DBP was observed for up to 1 h after the session whereas no statistically significant reductions were found for resting SBP. O’Connor et al. (196) examined the effects of 30 min of resistance exercise on ambulatory BP in females for up to 2 h after the session. Although no statistically significant changes were found for resting DBP, a significant elevation in SBP was observed at 1 and 15 min after the 80%-intensity condition, and at 1 min after a 60%-intensity condition.

More recently, Roltsch et al. (227) examined the ambulatory BP response for up to 24 h after resistance exercise in sedentary, endurance-trained, and resistance-trained men and women. Ambulatory BP was also assessed in the same subjects after 48 h of no exercise. The exercise session consisted of two sets of exercises on 12 machines with a 60-s rest period between sets. No statistically significant differences in ambulatory BP were observed among the groups.

Back to Top | Article Outline
Evidence statement.

Limited evidence suggests that resistance exercise has little effect on BP for up to 24 h after the exercise session. Evidence category C.

Back to Top | Article Outline
Acute Effects of Isometric Exercise
Evidence statement.

There are currently no studies available to provide a recommendation regarding the acute effects of isometric exercise on BP in adults.

Back to Top | Article Outline
Special Populations
Older adults.

Randomized controlled trials dealing with the effects of chronic aerobic exercise on resting BP in normotensive and hypertensive adults 50 yr of age and older have led to conflicting results (21,45,48,74,96, 103,111,154,197,213,223). However, a meta-analysis that focused specifically on the effects of aerobic exercise for reducing resting SBP and DBP in 802 normotensive and hypertensive male and female adults (563 exercise, 239 control) 50 yr of age and older found a statistically significant reduction of approximately 2 mm Hg (2%) for resting SBP and a nonsignificant reduction of approximately 1 mm Hg (1%) for resting DBP (151). Although these reductions in SBP may seem small from a clinical perspective, they are important for the general older adult population (247,271). Most of the studies followed the ACSM Guidelines for physical activity in older adults (10). Although few studies have examined the acute effects of endurance exercise in older adults, three reports have shown that PEH can occur for up to 22 h, regardless of the exercise intensity (102,228,250).

Back to Top | Article Outline
Evidence statement.

Regular endurance exercise reduces BP in older adults; additionally, there is no evidence to support the notion that training-mediated BP alterations differ between younger and older adults. Evidence category B. Limited evidence also suggests PEH occurs in older adults. Evidence category C.

Back to Top | Article Outline
Children and adolescents.

Randomized controlled trials studying the effects of chronic exercise on resting SBP and DBP in children and adolescents have led to conflicting results (20,25,59,62,73,91,92,100,113,139, 169,262). A meta-analysis that included a total of 1266 normotensive and hypertensive male and female children and adolescents (649 exercise, 617 control) found nonsignificant decreases of approximately 1 (1%) and 2 (3%) mm Hg for resting SBP and DBP as a result of exercise training (152). No differences were found when data were partitioned according to whether the subjects participated primarily in aerobic versus progressive resistance training. In the few studies involving children and adolescents with HTN, no statistically significant differences were found for either resting SBP or DBP as result of training as well as when data were partitioned according to whether the subjects were normotensive or hypertensive. Furthermore, the distinction between normotension and HTN is difficult because of the continuous increase in BP with age in children and adolescents as well as the different upper limits in various age categories. Although it is well established the prevalence of HTN is greater in adults versus children and adolescents, it is likely the escalating number of overweight and obese children and adolescents will lead to an increase in the prevalence of HTN in this cohort in the future. The former notwithstanding, defining HTN in children and adolescents is difficult given the increases in BP that occur as a result of increasing body size, particularly height (5).

Clearly, a need exists for additional research on the effects of exercise, including progressive resistance training, on resting BP in hypertensive children and adolescents. Finally, few exercise studies have utilized ambulatory BP monitoring in children and adolescents. One observational study examined ambulatory BP in black and white male and female adolescents, and reported increased fitness was associated with lower ambulatory BP, especially in black adolescents (117).

Back to Top | Article Outline
Evidence statement.

The evidence to date does not support endurance and resistance training as a nonpharmacologic intervention for reducing BP in children and adolescents. Evidence category B

Back to Top | Article Outline
Sex.

Meta-analytic research limited to randomized controlled trials has found no significant differences between the resting BP responses of normotensive and hypertensive men and women to endurance (149,150) and resistance (148) training. Of the 24 studies examining PEH among persons with HTN, 10 involved men and women (28,40,81,102,112,170,214,229,266,267), 9 included men only (16,81,115,120,144,207,243,250,276), and 4 women only (121,204,208,210). Of these, Quinn (214) is the only investigator who directly compared the influence of sex on PEH and found men and women to be similar in their postexercise BP response. Although estrogen is known to modulate vascular reactivity (179), none of the investigations involving men and women accounted for menstrual cycle phase in their study designs. Future work comparing the BP response of women and men of all ages to acute and chronic endurance and resistance exercise with ambulatory BP monitor-ing is needed.

Back to Top | Article Outline
Evidence statement.

Endurance exercise training reduces BP similarly in men and women. Evidence category B. Limited evidence suggests acute endurance exercise reduces BP similarly in white men and women. Evidence category C.

Back to Top | Article Outline
Ethnicity.

HTN has an earlier age of onset, is most common, and is associated with greater CVD morbidity and mortality in black Americans as compared with other ethnic groups in the United States (11). Despite these alarming statistics, there are few studies examining the influence of acute (120,121,210) and chronic (2,57,162,198,272) endurance exercise on BP among black Americans with HTN. A recent meta-analysis of randomized controlled trials examining the effects of aerobic exercise training on resting BP in normotensive and hypertensive adults reported black participants, when compared with white and Asian subjects, had greater decreases in resting SBP, whereas reductions in DBP were greater in Asians compared with whites and blacks (272). These results, however, were based on only six studies of Asians (124,125,197,230,258,270) and four studies of blacks (2,26,57,162). Headley et al. (121) and Pescatello et al. (210) directly compared the acute exercise BP response between black and white women with high normal to Stage 1 HTN and found PEH to be less in the black women. Because of the wide-reaching public health and medical treatment implications of these preliminary observations, future work is urgently needed to clarify if, how, and why ethnicity alters the BP response to endurance exercise, particularly among people of black and non-Hispanic white origin. Given the lack of research, a need also exists for studies examining ethnic differences in the BP response to acute and chronic progressive resistance exercise.

Back to Top | Article Outline
Evidence statement.

Currently no convincing evidence exists to support the notion ethnic differences exist in the BP response to chronic (Evidence category B) and acute exercise (Evidence category C).

Back to Top | Article Outline

EXERCISE RECOMMENDATIONS

Evaluation.

The routine evaluation of a patient with HTN includes a thorough individual and family history, physical examination, screening tests for secondary causes, and assessment of major risk factors, target organ damage, and CVD complications (137,283). Based on the level of BP and the presence of risk factors, target organ damage, and clinical CVD, the patient is classified in risk group A, B, or C (Table 2) (137). The extent of a pretraining screening evaluation mainly depends on the intensity of the anticipated exercise (129) and on the patient’s symptoms, signs, overall CVD risk, and clinical CVD.

In patients with HTN about to engage in hard or very hard exercise (intensity ≥ 60% V̇O2R), a medically supervised peak or symptom-limited exercise test with ECG monitoring may be warranted. In hypertensive men in the British Regional Heart Study (238), the long-term risk of major CVD events was reduced as patients were more active, up to moderately vigorous activity, but the risk increased again in vigorously active men, particularly in the presence of other risk factors (J-shaped curve). Peak or symptom-limited exercise testing is also indicated in patients with symptoms suggestive of CVD such as exertional dyspnea, chest discomfort, or palpitations.

In asymptomatic men or women in risk categories A or B (Table 2) and with BP < 180/110 mm Hg (Table 1; Stage 1 or 2), who engage in light to moderate dynamic physical activity (intensity < 60% V̇O2R), there is generally no need for further testing beyond the routine evaluation. Individual patients in risk category C without CVD, or with Stage 3 hypertension (BP ≥ 180/110 mm Hg), may benefit from exercise testing before engaging in moderate-intensity exercise (40–<60% V̇O2R) but not for light or very light activity (<40% V̇O2R).

In patients with documented CVD such as ischemic heart disease, heart failure or stroke, exercise testing is warranted and vigorous exercise training (≥60 V̇O2R) is best initiated in dedicated rehabilitation centers under medical supervision, where according to clinical status, advice can be given on the continuation of medically supervised gymnasium or home-based exercise programs. Comorbid conditions such as diabetes, ischemic heart disease, and heart failure should be adequately controlled before the start of exercise training. In the interim, while formal evaluation and management are taking place, it is reasonable for the majority of patients to begin moderate-intensity exercise training (40–<60% V̇O2R) such as walking. Finally, systematic follow up should be provided as outlined in the statement on Benefits and Recommendations for Physical Activity Programs for all Americans (78).

Back to Top | Article Outline
Safety.

Although considerable epidemiological evidence suggests chronic exercise may help to protect against the development of CVD and its sequelae, cardiovascular events associated with exercise have been reported in the medical literature and the lay press, suggesting strenuous physical activity may actually precipitate acute myocardial infarction or cardiac arrest in selected individuals (33,248). Accordingly, the challenge for physicians and other healthcare professionals is to provide prescriptive guidelines that minimize risks and maximize benefits.

Pathophysiologic evidence suggests exercise, by increasing myocardial V̇O2 and simultaneously shortening diastole and coronary perfusion time, may evoke a transient oxygen deficiency at the subendocardial level, which, in the presence of a compromised coronary circulation, may be highly arrhythmogenic (128). The notion strenuous physical activity can trigger acute myocardial infarction, particularly among persons with latent or known heart disease who are habitually sedentary, has also been substantiated by several studies (97,180,280). This may occur via abrupt increases in heart rate and SBP, induced coronary artery spasm in diseased artery segments, or the twisting of epicardial coronary arteries leading to disruption of vulnerable atherosclerotic plaque and thrombotic occlusion of a coronary vessel (225,251).

Factors that may affect the risk of physical exertion are age, the presence of coronary artery disease, and the intensity of exercise, which is directly related to the hemodynamic response and myocardial V̇O2 (79). Several investigators have shown excellent correlations between the measured myocardial V̇O2 and two of its major determinants: heart rate (r = 0.88) and the heart rate times SBP product (r = 0.92) (157,194). Thus, an excessive SBP response to exercise may contribute to ischemic cardiac events including acute myocardial infarction (128). Similarly, the potential for a hypertensive-induced cerebrovascular accident cannot be discounted.

The “normal” hemodynamic response to endurance exercise is a progressive increase in SBP, typically 8–12 mm Hg·MET−1 (192). When comparing healthy men and women, men generally have higher SBP during maximal treadmill testing (∼20 mm Hg), which may range from as low as 160 to more than 220 mm Hg (127), whereas DBP usually falls slightly or remains unchanged. In contrast, increased subendocardial perfusion, secondary to elevated DBP, may contribute to the lower incidence of ischemic responses when performing static-dynamic efforts versus dynamic efforts alone (17,50). Commonly used criteria for discontinuation of exercise testing include SBP and/or DBP values > 250 mm Hg and 115 mm Hg, respectively (95). It should be emphasized, however, that clinicians have arbitrarily established these values and that no data exist to support these endpoints. Moreover, there are virtually no reports of hypertensive-related cardiovascular complications that have resulted when subjects exceeded these levels. For endurance exercise training, it appears prudent to maintain even lower BP values (e.g., < 220/105 mm Hg).

Back to Top | Article Outline
Exercise recommendations.

The optimal training frequency, intensity, time, and type (FITT) of exercise needed to lower BP remains unclear. The recommendations put forth by the Centers for Disease Control and Prevention and ACSM (202) for society at large (“Every U.S. adult should accumulate 30 minutes or more of moderate-intensity physical activity on most, preferably all, days of the week ”) generally apply to individuals at risk for developing or those with HTN. Similarly, the recommendations promulgated in the 1996 Surgeon General’s report, Physical Activity and Health (257), are applicable as well. The specific recommendations outlined in the most recent ACSM Position Stand entitled “The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults” (9) are also generally relevant and—for the most part—suitable for those with HTN. When formulating the exercise FITT recommendations for this Position Stand, due consideration was given to the many recent thorough reviews on this topic (6,71,106,149,209,252,268,272).

Back to Top | Article Outline
Frequency: (on most, preferably all, days of the week).

Training frequencies between 3 and 5 d·wk−1 are effective in reducing BP (71,177). Although limited evidence suggests seven sessions may be more effective than three sessions per week (135,193), other data suggest that there is no association between frequency of weekly exercise and BP reductions (132). However, because a single bout of exercise can cause an acute reduction in BP that lasts many hours (e.g., PEH), augmenting or contributing to the reductions in BP resulting from exercise training (118,252), consideration should be given to daily or near-daily exercise.

Back to Top | Article Outline
Intensity: (moderate-intensity physical activity).

Fagard (71) completed a meta-analysis of randomized controlled intervention trials in normotensive and hypertensive subjects and found the reductions in BP resulting from endurance exercise training conducted at intensities between 40% and 70% of V̇O2R were of similar magnitude (SBP 3.4/DBP 2.4 mm Hg). Hagberg et al. (106), in their review of human studies, concluded greater reductions in resting BP occur when training at less than 70% V̇O2max as compared with higher intensities among individuals with HTN. Earlier data using animal models of HTN are consistent with this conclusion (254). There are few data, however, on the effects of light (20–30% of V̇O2R) and very hard (≥85% of V̇O2R) exercise on BP modulations (71). In summary, moderate-intensity exercise training appears effective in lowering BP acutely (85,86,102,207,209) and chronically (4,24,103,173,184, 235,272). Thus, the recommendation for those with HTN is regular participation in moderate-intensity endurance exercise, corresponding to 40–<60% of V̇O2R to maximize the benefits and minimize possible adverse effects of more vigorous exercise. This intensity range corresponds to approximately 12–13 on the Borg rating of perceived exertion (RPE) 6–20 scale (195). The reliance on RPE to monitor exercise intensity may be important for some, because the hemodynamic response to exercise may be altered by various antihypertensive medications, e.g., beta blockers. Although a vigorous exercise program may be appropriate in selected hypertensive patients, the risk of cardiovascular complications and orthopedic injuries is higher and adherence is lower with higher-intensity exercise programs (88).

Back to Top | Article Outline
Time: (duration: 30 min or more continuous or intermittent exercise per day).

Randomized controlled trials to date have generally used continuous rather than intermittent exercise, with durations between 30 and 60 min per session (71). The reduction in resting BP resulting from endurance exercise training does not appear to differ for exercise durations within this range. Intermittent shorter bouts of activity may also elicit reductions in BP (118,188,252). Moreover, other health benefits may be derived when multiple bouts of physical activity are performed throughout the day (19,188). A recent study (132) suggests 30–60 min of aerobic exercise per week conducted at 50% V̇O2max in previously sedentary hypertensive adults is effective in reducing resting BP. Greater reductions in systolic BP were observed with 61–90 min of aerobic exercise per week, but further increases in exercise time per week did not cause additional reductions in BP. These results should be interpreted with caution, because this was a nonrandomized trial and information on exercise frequency was not provided. These data notwithstanding, the recommendation is for 30–60 min of continuous or intermittent exercise per day (minimum of 10-min intermittent bouts accumulated throughout the day to total 30–60 min of exercise).

Back to Top | Article Outline
Type: (primarily aerobic activity supplemented by resistance exercise).

Most intervention trials (69,71,108,145–147,149,150,272) have used endurance exercises such as walking, jogging, running, or cycling as the exercise modality. However, any activity that uses large muscle groups, can be maintained continuously, and is rhythmical and aerobic in nature is recommended as the primary modality for those with HTN. Individual preference is an important factor to maximize long-term adherence. Resistance training is also an important component of a well-rounded exercise program. Although limited data suggest resistance training has a favorable effect on resting BP, the magnitude of the acute and chronic BP reductions are less than those reported for endurance exercise (148). The present recommendation is for resistance training to serve as an adjunct to an aerobic-based exercise program. The reader is referred to the recent American Heart Association statement on resistance training that discusses special considerations for those with and without CVD and other comorbid conditions (212). Other specific recommendations are beyond the scope of this Position Stand but can be found elsewhere (9,88,98).

Back to Top | Article Outline
Special considerations

* Antihypertensive medications such as beta blockers and diuretics impair the ability to regulate body temperature during exercise in hot and/or humid environments and provoke hypoglycemia (88,206). Thus, people using these medications should be educated on the signs/symptoms of heat illness, the role of adequate hydration, proper clothing to facilitate evaporative cooling, the optimal times of the day to exercise, the importance of decreasing the exercise dosage (time and intensity) during periods of increased heat or humidity, and methods to prevent hypoglycemia. In addition, beta blockers can substantially alter submaximal and maximal exercise capacity, particularly in those without myocardial ischemia and with nonselective agents.

* Because antihypertensive agents such as alpha blockers, calcium channel blockers, and vasodilators may provoke hypotensive episodes after abrupt cessation of activity, extending the cool-down period is generally recommended (88,98).

* Many persons with HTN are overweight (BMI 25–29.9 kg·m−2) or obese (BMI ≥ 30 kg·m−2) (133,191,257). Therefore, an exercise program that emphasizes a daily caloric expenditure of more than 300 kcal, coupled with reductions in energy intake, should be recommended. This may be accomplished best with moderate-intensity, prolonged exercise, such as walking. The combination of regular exercise and weight loss should be effective in lowering resting BP (133,191,257). More specific guidelines for overweight and obese individuals with features of the metabolic syndrome are beyond the scope of this Position Stand and can be found elsewhere (3,8,191).

* Older persons appear to demonstrate similar increases in V̇O2max (103,104,161,234) and reductions in BP with exercise training as young adults (10). Additional exercise recommendations for the older adult beginning an exercise program can be found in the ACSM Position Stand on this topic (10).

* Patient education regarding the importance of regular exercise for BP control and management may increase exercise adherence. Patients may be especially responsive if this information comes from their personal physician. Anecdotal evidence suggests knowledge of the immediate BP-lowering effects of exercise (i.e., PEH) may promote exercise adherence (210).

* Individuals with severe or uncontrolled BP should add exercise training only after physician evaluation and initiation of drug therapy.

* Other precautions or modifications may be necessary for selected patients, particularly higher risk patients with comorbidities such as coronary artery disease or chronic heart failure. For example, in the hypertensive patient with coronary artery disease, the above-referenced guidelines are still appropriate, but the intensity of training should be set safely below (≥10 beats·min−1) the ischemic ECG or anginal threshold. Additional prescriptive information is beyond the scope of this Position Stand. The reader is referred to other authoritative documents regarding special considerations for those with coronary artery disease (7,79,278).

Back to Top | Article Outline
Evidence statements.

For persons with high BP, an exercise program that is primarily aerobic-based (Evidence category A) with adjunctive resistance training (Evidence category B) is recommended. The evidence is limited regarding frequency, intensity, and time recommendations (Evidence category C) and special considerations for those with HTN (Evidence category D). Nonetheless, the antihypertensive effects of exercise appear to occur at a relatively low duration and intensity.

Back to Top | Article Outline

MECHANISMS

Potential Mechanisms for Reductions in BP after Endurance Exercise
Chronic exercise.

Because mean arterial pressure (MAP) is determined by cardiac output and total peripheral resistance (TPR), reductions in arterial pressure after endurance exercise training must be mediated by decreases in one or both of these variables. Reductions in resting cardiac output do not typically occur after chronic exercise; thus, decreased TPR appears to be the primary mechanism by which resting BP is reduced after exercise training.

As derived from Poiseuille’s law, TPR is directly proportional to blood viscosity and length of the vessel, but inversely proportional to the fourth power of the radius. Because the former are not significantly altered by training, reductions in TPR are primarily associated with changes in vessel diameter. Accordingly, small changes in vessel diameter have a profound impact on vascular resistance. Reductions in vascular resistance after training are mediated by neurohumoral and structural adaptations, altered vascular responsiveness to vasoactive stimuli, or both. Reductions in the vasoconstrictor state of the peripheral vasculature by less sympathetic neural influence or greater local vasodilator influence (e.g., nitric oxide) are examples of neural and local changes that would reduce peripheral resistance and lower BP. Larger lumen diameter and greater distensibility of the vasculature are structural adaptations to training permitting lower peripheral resistance. Finally, genetic factors may contribute to BP adaptations after endurance exercise training.

Back to Top | Article Outline
Neurohumoral Adaptations
Sympathetic nervous system.

Elevated sympathetic nerve activity is a hallmark observation in essential HTN (1). Sympathetic nerve activity (SNA) and the subsequent release of norepinephrine (NE) mediate vasoconstriction and increase vascular resistance. Reductions in central sympathetic nerve outflow or circulating NE attenuate vasoconstriction and lead to reductions in BP. Currently, direct recordings of efferent SNA in humans by microneurography do not convincingly demonstrate reductions in central SNA at rest after exercise training in normotensive subjects (220–222). However, similar data are lacking in hypertensive subjects. Muscle SNA was elevated in hypertensive subjects as compared with normotensive subjects in some (82,99,174,175) but not all studies (183,269). Therefore, training may possibly reduce SNA in hypertensive subjects. Furthermore, studies indicate baroreflex control of SNA is enhanced by exercise training (29,240,242), therefore, providing one potential mechanism of lowering SNA. However, microneurography studies are limited only to nerve activity to skeletal muscle or skin, and reductions in SNA to other vascular beds (e.g., renal and splanchnic beds) may also occur.

Despite the limited evidence to support reductions in efferent SNA after training, reductions in plasma NE have been reported after training (134,178,193,258). Meredith et al. (178) found reductions in plasma NE after endurance training were related to decreased spillover and not increased clearance, suggesting a decrease in SNA. Recently, Brown et al. (27) reported training-induced decreases in BP in older mild hypertensive subjects were associated with reduced NE release rate. Less NE at the synapse would be one mechanism that would facilitate reductions in vascular resistance after training. Interestingly, Meredith et al. (178) reported that the reduction in total plasma NE spillover could be accounted for mainly by the decrease in NE spillover in the kidneys (70%). However, the associated fall in renal vascular resistance was insufficient to account for the BP-lowering effect of exercise training. These investigators suggested that other effects associated with the inhibition of the renal sympathetic outflow may be important in reducing BP after training (e.g., decreased renin release).

Hyperinsulinemia and insulin resistance are associated with HTN and activation of the sympathetic nervous system (12,13,140). Because exercise training improves insulin sensitivity (122), this may be an important mechanism in mediating reductions in sympathetic outflow and BP. A recent study in hypertensive subjects demonstrated a close association between the reduction in resting BP and plasma NE and improved insulin sensitivity after exercise training (160). Training-induced muscle adaptations appear to be important in attenuating insulin mediated sympathetic activation.

Finally, elevated SNA has been associated with increases in arterial wall thickening (54). Therefore, training-induced decreases in SNA may be beneficial in preventing vascular remodeling that is associated with HTN.

Back to Top | Article Outline
Renin-angiotensin system.

Because angiotensin II is a powerful vasoconstrictor and regulator of blood volume, reductions in renin and angiotensin II with training would likely be a contributor to reduced BP. In normotensive subjects, reduced resting levels of renin and angiotensin II after training have been reported (94,134). However, in hypertensive subjects, exercise training does not consistently reduce plasma renin (103,193,258) and angiotensin II levels (63,123). Thus, current evidence suggests that the renin-angiotensin system does not appreciably contribute to the lowering of BP after training.

Back to Top | Article Outline
Vascular responsiveness.

Vascular adaptations are likely to contribute to lower BP after training. Vascular responsiveness to α-adrenergic receptor stimulation by NE is attenuated after training (38,52,244,273). Chronic exercise has been shown to decrease α-adrenergic vasoconstriction in spontaneously hypertensive rats (37). Endothelin-1, which is a potent vasoconstrictor, has been demonstrated to elicit greater vasoreactivity in HTN (34,233,249). Training also lowers endothelin-1 levels in humans (171). Animal studies have reported reduced vascular sensitivity to endothelin-1 after training (138,168). Thus, exercise training alters the vascular responsiveness to two potent vasoconstrictors, NE and endothelin-1.

HTN impairs endothelial function. Associated with endothelial dysfunction are greater vascular tone and less vasodilator function. Endothelial-dependent vasodilation is critically dependent upon the production of nitric oxide. Exercise training has been shown to increase nitric oxide production and improve vasodilatory function in healthy subjects (155,156). Higashi et al. (124,125) reported reactive hyperemia and an enhanced forearm blood flow response to acetylcholine infusion were enhanced after 12 wk of walking in subjects with essential HTN that showed reductions in resting BP. However, endothelial-independent vasoconstriction remained unchanged. These findings are consistent with animal studies using normotensive (51,53) and spontaneous hypertensive rats (284). Collectively, these findings indicate improved endothelial-dependent mediated vasodilation is an important training adaptation to reduce peripheral resistance in HTN.

Back to Top | Article Outline
Structural adaptations.

Considerable evidence suggests changes in vascular structure occur in muscle in response to exercise training (167). These include vascular remodeling (i.e., increased length, cross-sectional area, and/or diameter of already existing arteries and veins) and angiogenesis (i.e., new vessel growth). Currently, few data are available concerning the effects of training on the size or number of small arteries and arterioles. Arteriolar density is greater in spinotrapezius muscle in endurance trained rats (165). However, the most convincing evidence in this regard is the decreased precapillary vascular resistance of hindquarters isolated from trained normotensive (236,237) and spontaneously hypertensive rats (60). Therefore, the training-induced alterations in vascular structure (i.e., increased muscle precapillary vessel number) that elevate the total cross-sectional area of resistance vessel lumina suggest a possible mechanism to lower peripheral resistance and reduce resting BP.

Cross-sectional data indicate endurance trained subjects have larger arterial lumen diameter in conduit arteries than untrained controls (130,239,274). A recent longitudinal training study confirmed these findings (55); moreover, intima-media thickness and the intima-media thickness/lumen ratio were reduced. Similarly, both cross-sectional and longitudinal studies have demonstrated greater arterial compliance after training in normotensive subjects (32,182,259). However, short-term aerobic training does not appear to increase large artery compliance in isolated systolic hypertensive subjects (74). In summary, training-induced vascular remodeling may contribute to the antihypertensive effect of exercise, but additional confirmatory studies are needed.

Back to Top | Article Outline
Genetic influences.

The antihypertensive effects of exercise training may also be associated with genetic factors. Genetic influences on BP adaptations have been observed both at rest and during exercise. Much of these data have been generated by the HERITAGE Family Study (281). Rice et al. (224) suggested genetic factors account for approximately 17% of the reduction in resting SBP after exercise training. A number of genes were identified that may contribute to this response. Rankinen and colleagues (218) examined the associations between NOS3-Glu298Asp variants (gene responsible for nitric oxide synthase) and changes in BP at rest and during submaximal exercise after an endurance training program in 471 normotensive men and women from the HERITAGE Family Study. Although there were no associations between NOS3-Glu/Asp single nucleotide polymorphisms and resting BP, individuals with the NOS3-Asp allele reduced DBP less during submaximal exercise than those homozygous for the NOS3-Glu allele. These investigators also demonstrated an association between angiotensinogen, angiotensin-converting enzyme, TGF-β1 gene polymorphisms, and physical training on resting and exercise BP (216,217,226). Because these studies were conducted in normotensive subjects, differing responses may be observed in hypertensive individuals. Accordingly, Hagberg et al. (105) reported that hypertensive subjects with different alleles for apoE gene had different training-induced changes in resting BP.

In summary, although there appears to be a genetic component to BP adaptations to exercise training, the overall contribution seems small. The reasons for these weak associations may be due to the complexities of BP regulation in normal and diseased states, unidentified genetic interactions between multiple loci and environmental factors, or both (279). Future studies should provide greater insight in this burgeoning area of study.

Back to Top | Article Outline
Acute exercise.

The exact mechanism for PEH is unclear and is most likely multifactorial. With one exception (i.e., older hypertensive subjects) (102), studies suggest that the acute decrease in BP is related to reductions in peripheral resistance rather than cardiac output. Two prominent mechanisms have been proposed to explain the decrease in peripheral resistance: sympathetic inhibition and altered vascular responsiveness after exercise. Reductions in sympathetic outflow after exercise have been reported in both animals and humans (80,109,164). How sympathetic outflow is reduced by acute exercise remains unclear. It appears the arterial and cardiopulmonary baroreflexes are important for PEH (35,42). Chandler and DiCarlo (35) reported sinoaortic denervation prevented PEH in SHR rats. After acute exercise, PEH is associated with a resetting of the operating point of the arterial baroreflex to a lower BP (109). Recent studies of the central nervous system have shown an augmented GABAA signaling at the rostral ventrolateral medulla may contribute to decreased sympathetic outflow during PEH (141). Additionally, substance P receptors in the nucleus tractus solitarius and central vasopressin V1 receptors have also been shown to contribute to PEH (36,43). Although it was formerly believed activation of the endogenous opioid system contributed significantly to reductions in sympathetic outflow and PEH (253), more recent studies in humans have questioned the importance of this mechanism (114).

Changes in vascular responsiveness related to PEH are associated with decreased transduction of sympathetic outflow to vascular resistance and the release of local vasodilator substances induced by muscle contraction and augmented muscle blood flow (e.g., nitric oxide released). After acute exercise, vascular responsiveness to ∝-adrenergic stimulation is blunted (109,203). This response alone would facilitate vasodilation and reductions in peripheral resistance. Local release of nitric oxide, prostaglandins, adenosine, and ATP is augmented during exercise and would also facilitate peripheral vasodilation after acute exercise (110). Rao et al. (219) reported the reduced ∝1-adrenergic responsiveness after exercise in male spontaneously hypertensive rats may be attributed to nitric oxide. This study provides an example of the multitude of interactions that may occur between vascular transduction systems to decrease vascular resistance. Although the mechanism for PEH remains elusive, multiple factors probably interact to mediate the response (110).

The extent to which the lowering effects of exercise training on BP reflect the integration or carryover of the acute effects of exercise (i.e., PEH) remains unknown. Studies linking PEH to the long-term antihypertensive adaptations associated with exercise training have yet to be conducted.

Back to Top | Article Outline
Evidence statement.

Both neural and vascular changes contribute to the decreases in BP that result from acute and chronic endurance exercise. Evidence category C Emerging data suggest possible genetic links to acute and chronic exercise BP reductions. Evidence category D Because of multifactorial mechanisms and system redundancies contributing to the BP reductions from acute and chronic endurance exercise, definitive conclusions regarding the mechanisms for the hypotensive influence of endurance exercise cannot be made at this time.

Back to Top | Article Outline

SUMMARY AND CONCLUSIONS

HTN, one of the most common medical disorders, is associated with an increased incidence of all-cause and CVD mortality, and is the most prevalent cardiovascular condition found in recreational exercisers and athletes. Because of the importance of the topic, the ACSM presents an evidence based review of the current state of knowledge on exercise and HTN. Table 4 lists and categorizes the evidence statements made within this Position Stand.

Table 4
Table 4
Image Tools

Despite conclusive evidence that antihypertensive therapy reduces CVD complications, HTN has a low successful treatment rate. Lifestyle modifications are advocated for the treatment and prevention of HTN, with exercise being an integral component. This recommendation stems from longitudinal studies showing higher levels of physical activity and fitness are associated with decreased risks of developing HTN. Exercise programs that primarily include endurance activity, resistance training, or both, not only have a role in the primary prevention of HTN but also lower BP. The BP-lowering effects of exercise are most pronounced in people with HTN who engage in endurance exercise with BP-decreasing approximately 5–7 mm Hg after an isolated exercise session (acute) or after exercise training (chronic). Moreover, BP is reduced for up to 22 h after an endurance exercise bout (e.g., PEH), with the greatest decreases among those with the highest baseline BP. Small decrements in SBP and DBP of 2 mm Hg reduce the risk of stroke by 14% and 17%, and risk of coronary artery disease by 9% and 6%, respectively, in the general population. Enormous public health benefit could be realized by people with HTN if they habitually exercised.

There are numerous proposed mechanisms for the salutary effect of exercise on BP, including neurohumoral, vascular, and structural adaptations. Decreases in catecholamines, TPR, and body weight and fat stores, as well as improved insulin sensitivity and alterations in vasodilators and vasoconstrictors are postulated to explain the antihypertensive effects of exercise. Emerging data suggest possible genetic links to BP reductions associated with acute and chronic endurance exercise. Nonetheless, definitive conclusions regarding the mechanisms for the BP reductions after endurance exercise cannot be made at this time.

Individuals with controlled HTN and no CVD or renal complications may participate in an exercise program or competitive athletics, but should be evaluated, treated, and monitored closely. There are limitations in establishing BP cutoff levels for participation because BP exists on a continuum. Preliminary peak or symptom-limited exercise testing may be warranted, especially for men over 45 and women over 55 yr planning a vigorous exercise program (i.e., ≥ 60%V̇O2R). In the interim, while formal evaluation and management are taking place, it is reasonable for the majority of patients to begin moderate-intensity exercise training (40–<60% V̇O2R) such as walking. When pharmacologic therapy is indicated in physically active people it should, ideally: a) lower arterial BP not only at rest, but during exertion; b) decrease TPR; and c) not adversely affect exercise capacity. For these reasons, angiotensin converting enzyme (ACE) inhibitors (or angiotensin II receptor blockers in case of ACE inhibitor intolerance) and calcium channel blockers are currently the drugs of choice for recreational exercisers and athletes with HTN, except that the combination of an angiotensin converting enzyme inhibitor and an angiotensin II receptor blocker is currently not warranted. If a third drug is required, a low-dose thiazide-like diuretic, possibly in combination with a potassium sparing agent, can be recommended. There is no evidence that antihypertensive agents would impair performance in static sports.

Exercise remains a cornerstone therapy for the primary prevention, treatment, and control of HTN. The optimal training FITT needs to be more precisely defined in order to optimize the BP-lowering capacities of exercise, particularly in children, women, older adults, and certain ethnic groups. Based upon the current evidence, the following exercise prescription is recommended for those with high BP:

Frequency: on most, preferably all, days of the week

Intensity: moderate intensity (40–<60% of V̇O2R)

Time: ≥30 min of continuous or accumulated physical activity per day

Type: primarily endurance physical activity supplemented by resistance exercise.

Back to Top | Article Outline

ACKNOWLEDGMENT

This pronouncement was reviewed for the American College of Sports Medicine by the members-at-large; the Pronouncements Committee; Carl Foster, Ph.D., FACSM; James Hagberg, Ph.D., FACSM; Gary Jennings, Ph.D.; Mark Williams, Ph.D., FACSM; Jack Wilmore, Ph.D., FACSM, and Edward Zambraski, Ph.D., FACSM.

This Position Stand replaces the 1993 ACSM position paper, “Physical Activity, Physical Fitness, and Hypertension,”Med. Sci. Sports Exerc. 25(10):i–x, 1993.

Back to Top | Article Outline

REFERENCES

1. Abboud, F. M. The sympathetic system in hypertension: State-of-the-art review. Hypertens. 4: 208–225, 1982.

2. Akinpelu, A. O. Responses of the African hypertensive to exercise training: preliminary observations. J. Hum. Hypertens. 4: 74–76, 1990.

3. Albright, A., M. Franz, G. Hornsby, et al. American College of Sports Medicine position stand: exercise and Type 2 diabetes. Med. Sci. Sports Exerc. 32: 1345–1360, 2000.

4. Allen, D. H., I. B. Puddey, A. R. Morton, and L. J. Beilin. A controlled study of the effects of aerobic exercise on antihypertensive drug requirements of essential hypertensive patients in the general practice setting. Clin. Exp. Pharmacol. Physiol. 18: 279–282, 1991.

5. Alpert, B. S., J. H. Wilmore. Physical activity and blood pressure in adolescents. Pediatr. Exerc. Sci. 8: 361–380, 1994.

6. American College of Sports Medicine. Position stand: physical activity, physical fitness, and hypertension. Med. Sci. Sports Exerc. 25: i–x, 1993.

7. American College of Sports Medicine. Position stand: exercise for patients with coronary artery disease. Med. Sci. Sports Exerc. 26: i–v, 1994.

8. American College of Sports Medicine and American Diabetes Association joint position statement: diabetes mellitus and exercise. Med. Sci. Sports Exerc. 29: i–vi, 1997.

9. American College of Sports Medicine. Position stand: the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. Sports Exerc. 30: 975–991, 1998.

10. American College of Sports Medicine Position Stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 30: 992–1008, 1998.

11. American Heart Association. 2003 Heart and Stroke Statistical Update. Dallas, TX: American Heart Association, 2002.

12. Anderson, E. A., R. P. Hoffman, T. W. Balon, C. A. Sinkey, and A. L. Mark. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J. Clin. Invest. 87: 2246–2252, 1991.

13. Baron, A. D., G. Brechtel-Hook, A. Johnson, and D. Hardin. Skeletal muscle blood flow. A possible link between insulin resistance and blood pressure. Hypertens. 21: 129–135, 1993.

14. Belles, D. R. The Benefits of Circuit Weight Training in Law Enforcement Personnel. Gainesville, FL: University of Florida, 1989.

15. Benetos, A., A. Rudnicki, M. Safar, and L. Guize. Pulse pressure and cardiovascular mortality in normotensive and hypertensive subjects. Hypertens. 32: 560–564, 1998.

16. Bennett, T., R. G. Wilcox, and I. A. Macdonald. Post-exercise reduction of blood pressure in hypertensive men is not due to acute impairment of baroreflex function. Clin. Sci. (Lond.) 67: 97–103, 1984.

17. Bertagnoli, K., P. Hanson, and A. Ward. Attenuation of exercise-induced ST depression during combined isometric and dynamic exercise in coronary artery disease. Am. J. Cardiol. 65: 314–317, 1990.

18. Blair, S. N., N. N. Goodyear, L. W. Gibbons, and K. H. Cooper. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA 252: 487–490, 1984.

19. Blair, S. N., H. W. Kohl, N. F. Gordon, and R. S. Paffenbarger, Jr. How much physical activity is good for health? Annu. Rev. Public Health 13: 99–126, 1992.

20. Blessing, D. L., R. E. Keith, H. N. Williford, M. E. Blessing, and J. A. Barksdale. Blood lipid and physiological responses to endurance training in adolescents. Pediatr. Exerc. Sci. 7: 192–202, 1995.

21. Blumenthal, J. A., C. F. Emery, D. J. Madden, et al. Cardiovascular and behavioral effects of aerobic exercise training in healthy older men and women. J. Gerontol. 44: 147–157, 1989.

22. Blumenthal, J. A., A. Sherwood, E. C. Gullette, et al. Exercise and weight loss reduce blood pressure in men and women with mild hypertension: effects on cardiovascular, metabolic and hemodynamic functioning. Arch. Intern. Med. 160: 1947–1958, 2000.

23. Blumenthal, J. A., W. C. Siegel, and M. Appelbaum. Failure of exercise to reduce blood pressure in patients with mild hypertension. JAMA 266: 2098–2104, 1991.

24. Braith, R. W., M. L. Pollock, D. T. Lowenthal, J. E. Graves, and M. C. Limacher. Moderate- and high-intensity exercise lowers blood pressure in normotensive subjects 60 to 79 years of age. Am. J. Cardiol. 73: 1124–1128, 1994.

25. Brown, M. K. The Effects of Diet and Exercise on Selected Coronary Risk Factors in Children. Provo, UT: Brigham Young University; 1981.

26. Brown, M. D., G. E. Moore, M. T. Korythowski, S. D. Mccole, and J. M. Hagberg. Improvement of insulin sensitivity by short-term exercise training in hypertensive African American women. Hypertens. 30: 1549–1553, 1997.

27. Brown, M. D., D. R. Dengel, R. V. Hogikyan, and M. A. Supiano. Sympathetic activity and the heterogenous blood pressure response to exercise training in hypertensives. J. Appl. Physiol. 92: 1434–1442, 2002.

28. Brownley, K. A., S. G. West, A. L. Hinderliter, and K. C. Light. Acute aerobic exercise reduces ambulatory blood pressure in borderline hypertensive men and women. Am. J. Hypertens. 9: 200–206, 1996.

29. Brum, P. C., G. J. Da Silva, E. D. Moreira, F. Ida, C. E. Negrao, and E. M. Krieger. Exercise training increases baroreceptor gain sensitivity in normal and hypertensive rats. Hypertens. 36: 1018–1022, 2000.

30. Burt, V. L., P. Whelton, E. J. Rocella, et al. Prevalence of hypertension in the US Adult Population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 25: 305–313, 1995.

31. Byrne, H. K. The Effects of Exercise Training on Resting Metabolic Rate and Resting Blood Pressure in Women. Austin, TX: University of Texas at Austin, 1997.

32. Cameron, J. D., and A. M. Dart. Exercise training increases total systemic arterial compliance in humans. Am. J. Physiol. 266: H693–H701, 1994.

33. Cantwell, J. D., and G. F. Fletcher. Cardiovascular complications while jogging. JAMA 210: 130–131, 1969.

34. Cardillo, C., C. M. Kilcoyne, M. Waclawiw, R. O. Cannon, III, and J. A. Panza. Role of endothelin in the increased vascular tone of patients with essential hypertension. Hypertens. 33: 753–758, 1999.

35. Chandler, M. P., and S. E. Dicarlo. Sinoaortic denervation prevents postexercise reductions in arterial pressure and cardiac sympathetic tonus. Am. J. Physiol. 273: H2738–H2745, 1997.

36. Chen, C. Y., P. A. Munch, A. W. Quail, and A. C. Bonham. Postexercise hypotension in conscious SHR is attenuated by blockade of substance P receptors in NTS. Am. J. Physiol. Heart Circ. Physiol. 283: H1856–H1862, 2002.

37. Chen, H. I., and I. P. Chiang. Chronic exercise decreases adrenergic agonist-induced vasoconstriction in spontaneously hypertensive rats. Am. J. Physiol. 271: H977–H983, 1996.

38. Chen, H. I., H. T. Li, and C. C. Chen. Physical conditioning decreases norepinephrine-induced vasoconstriction in rabbits: possible roles of norepinephrine-evoked endothelium-derived relaxing factor. Circulation 90: 970–975, 1994.

39. Chobanian, A. V., G. L. Bakris, H. R. Black, et al., and the National High Blood Pressure Education Program Coordinating Committee: the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The JNC 7 Report. Hypertens. 42: 1206–1252, 2003.

40. Cléroux, J. M. Kouamé, A. Nadeau, D. Coulombe, and Y. Lacourciére. After effects of exercise on regional and systemic hemodynamics in hypertension. Hypertens. 19: 183–191, 1992.

41. Coats, A. J. S., J. Conway, J. D. Isea, G. Pannarale, P. Sleight, and V. K. Somers. Systemic and forearm vascular resistance changes after upright bicycle exercise in man. J. Physiol. 413: 289–298, 1989.

42. Collins, H. L., and S. E. Dicarlo. Attenuation of postexertional hypotension by cardiac afferent blockade. Am. J. Physiol. 265: H1179–H1183, 1993.

43. Collins, H. L., D. W. Rodenbaugh, and S. E. Dicarlo. Central blockade of vasopressin V(1) receptors attenuates postexercise hypotension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281: R375–380, 2001.

44. Collins, R., R. Peto, S. Mcmahon, et al. Blood pressure, stroke and coronary heart disease: part 2, short-term reductions in blood pressure: overview of randomized drug trials in their epidemiological context. Lancet 335: 827–838, 1990.

45. Cononie, C. C., J. E. Graves, M. L. Pollock, M. I. Phillips, C. Sumners, and J. M. Hagberg. Effect of exercise training on blood pressure in 70- to 79-yr-old men and women. Med. Sci. Sports Exerc. 23: 505–511, 1991.

46. Cooper, A. R., L. A. Moore, J. Mckenna, and C. J. Riddoch. What is the magnitude of blood pressure response to a programme of moderate intensity exercise? Randomised controlled trial among sedentary adults with unmedicated hypertension. Br. J. Gen. Pract. 50: 958–962, 2000.

47. Cox, J. L., I. B. Puddey, A. R. Morton, V. Burke, L. J. Beilin, and M. Mcaleer. Exercise and weight control in sedentary overweight men: effects on clinic and ambulatory blood pressure. J. Hypertens. 14: 779–790, 1996.

48. Cunningham, D. A., P. A. Rechnitzer, J. H. Howard, and A. P. Donner. Exercise training of men at retirement: a clinical trial. J. Gerontol. 42: 17–23, 1987.

49. Davidoff, R., C. L. Schamroth, A. P. Goldman, T. H. Diamond, A. J. Cilliers, and D. P. Myburgh. Postexercise blood pressure as a predictor of hypertension. Aviat. Space Environ. Med. 53: 591–594, 1982.

50. De Busk, R., W. Pitts, W. Haskell, and N. Houston. Comparison of cardiovascular responses to static-dynamic effort and dynamic effort alone in patients with chronic ischemic heart disease. Circulation 59: 977–984, 1979.

51. Delp, M. D., R. M. Mcallister, and M. H. Laughlin. Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. J. Appl. Physiol. 75: 1354–1363, 1993.

52. Delp, M. D., R. M. Mcallister, and M. H. Laughlin. Exercise training alters aortic vascular reactivity in hypothyroid rats. Am. J. Physiol. 268: H1428–H1435, 1995.

53. Delp, M. D., and M. H. Laughlin. Time course of enhanced endothelium-mediated dilation in aorta of trained rats. Med. Sci. Sports Exerc. 29: 1454–1461, 1997.

54. Dinenno, F. A., P. P. Jones, D. R. Seals, and H. Tanaka. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am. J. Physiol. Heart Circ. Physiol. 278: H1205–H1210, 2000.

55. Dinenno, F. A., H. Tanaka, K. D. Monahan, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J. Physiol. 534: 287–295, 2001.

56. Don, B. W. M. The Effects of Strength Training on Cardiovascular Reactivity to Stress and Psychological Well-Being in College Women. Boston: Boston University, 1996.

57. Duey, W. J., W. L. O’Brien, A. B. Crutchfield, L. A. Brown, H. N. Williford, and M. Sharff-Olson. Effects of exercise training on aerobic fitness in African-American females. Ethn. Dis. 8: 308–311, 1998.

58. Dunstan, D. W., I. B. Puddey, L. J. Beilin, V. Burke, A. R. Morton, and K. G. Stanton. Effects of a short-term circuit weight training program on glycaemic control in NIDDM. Diabetes Res. Clin. Pract. 40: 53–61, 1998.

59. Dwyer, T., W. E. Coonan, D. R. Leitch, B. S. Hetzel, and R. A. Baghurst. An investigation of the effects of daily physical activity on the health of primary school students in South Australia. Int. J. Epidemiol. 12: 308–313, 1983.

60. Edwards, M. T., and J. N. Diana. Effect of exercise on pre- and postcapillary resistance in the spontaneously hypertensive rat. Am. J. Physiol. 234: H439–446, 1978.

61. European Society of Hypertension. European Society of Cardiology guidelines for the management of arterial hypertension. J. Hypertens. 21: 1011–1053, 2003.

62. Ewart, C. K., D. Rohm Young, and J. M. Hagberg. Effects of school-based aerobic exercise on blood pressure in adolescent girls at risk for hypertension. Am. J. Public Health 88: 949–951, 1998.

63. Fagard, R., R. Grauwels, D. Groeseneken, P. Lijnen, J. Staessen, L. Vanhees, and A. Amery. Plasma levels of renin, angiotensin II, and 6-ketoprostaglandin F1 alpha in endurance athletes. J. Appl. Physiol. 59: 947–952, 1985.

64. Fagard, R. H. Physical fitness and blood pressure. J. Hypertens. 11( Suppl. 5): S47–S52, 1993.

65. Fagard, R. H., K. Pardaens, J. A. Staessen, and L. Thijs. Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men. Hypertens. 28: 31–36, 1996.

66. Fagard, R. H., K. Pardaens, J. A. Staessen, and L. Thijs. Should exercise blood pressure be measured in clinical practice? J. Hypertens. 16: 1215–1217, 1998.

67. Fagard, R. Exercise and hypertension. J. Hum. Hypertens. 13: 359–360, 1999.

68. Fagard, R., K. Pardaens, and J. Vanhaecke. Prognostic significance of exercise versus resting blood pressure in patients with chronic heart failure. J. Hypertens. 17: 1977–1981, 1999.

69. Fagard, R. H. Physical activity in the prevention and treatment of hypertension in the obese. Med. Sci. Sports Exerc. 31( Suppl.): S624–S630, 1999.

70. Fagard, R. H. Physical activity, fitness and blood pressure. In: Handbook of Hypertension: Epidemiology of Hypertension, W. H. Birkenhäger, J. L. Reid, and C. J. Bulpitt (Eds.). Amsterdam: Elsevier, 2000, pp. 191–211.

71. Fagard, R. H. Exercise characteristics and the blood pressure response to dynamic physical training. Med. Sci. Sports Exerc. 33( Suppl): S484–492; discussion S493–494, 2001.

72. Fagard, R. H., M. Van den Enden, M. Leeman, and X. Warling. Survey on treatment of hypertension and implementation of WHO/ISH risk stratification in primary care in Belgium. J. Hypertens. 20: 1297–1302, 2002.

73. Faigenbaum, A. D., L. D. Zaichkowsky, W. L. Westcott, L. J. Micheli, and A. F. Fehlandt. The effects of twice-a-week strength training program on children. Pediatr. Exerc. Sci. 5: 339–346, 1993.

74. Ferrier, K. E., T. K. Waddell, C. D. Gatzka, J. D. Cameron, A. M. Dart, and B. A. Kingwell. Aerobic exercise training does not modify large-artery compliance in isolated systolic hypertension. Hypertens. 38: 222–226, 2001.

75. Filipovsky, J., P. Ducimetière, and M. E. Safar. Prognostic significance of exercise blood pressure and heart rate in middle-aged men. Hypertens. 20: 333–339, 1992.

76. Fitzgerald, W. Labile hypertension and jogging: new diagnostic tool or spurious discovery? Br. Med. J. 282: 542–544, 1981.

77. Fleg, J. L., and E. G. Lakatta. Prevalence and significance of postexercise hypotension in apparently healthy subjects. Am. J. Cardiol. 57: 1380–1384, 1986.

78. Fletcher, G. F., G. Balady, S. N. Blair, et al. Statement on exercise: benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 94: 857–862, 1996.

79. Fletcher, G. F., G. J. Balady, E. A. Amsterdam, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104: 1694–1740, 2001.

80. Floras, J. S., C. A. Sinkey, P. E. Aylward, D. R. Seals, P. N. Thoren, and A. L. Mark. Postexercise hypotension and sympathoinhibition in borderline hypertensive men. Hypertens. 14: 28–35, 1989.

81. Floras, J. S., and J. Wesche. Haemodynamic contributions to post-exercise hypotension in young adults with hypertension and rapid resting heart rates. J. Hum. Hypertens. 6: 265–269, 1992.

82. Floras, J. S., and K. Hara. Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. J. Hypertens. 11: 647–655, 1993.

83. Folsom, A. R., R. J. Prineas, S. A. Kaye, and R. G. Munger. Incidence of hypertension and stroke in relation to body fat distribution and other risk factors in older women. Stroke 21: 701–706, 1990.

84. Forjaz, C. L. M., D. F. Santaella, L. O. Rezende, A. C. P. Barretto, and C. E. Negrâo. Exercise duration determines the magnitude and duration of post-exercise hypotension. Arq. Bras. Cardiol. 70: 99–104, 1998.

85. Forjaz, C. L., Y. Matsudaira, F. B. Rodrigues, N. Numes, and C. E. Negrâo. Post-exercise changes in blood pressure, heart rate and rate pressure product at different exercise intensities in normotensive humans. Braz. J. Med. Biol. Res. 31: 1247–1255, 1998.

86. Forjaz, C. L., D. F. Santaella, L. O. Rezende, A. C. Barretto, and C. E. Negrâo. Effect of exercise duration on the magnitude and duration of post-exercise hypotension. Arq. Bras. Cardiol. 70: 99–104, 1998.

87. Fortmann, S. P., W. L. Haskell, P. D. Wood, and the Stanford Weight Control Project Team. Effects of weight loss on clinic and ambulatory blood pressure in normotensive men. Am. J. Cardiol. 62: 89–93, 1988.

88. Franklin, B. A., M. H. Whaley, and E. T. Howley (Eds.). ACSM’s Guidelines for Exercise Testing and Prescription, 6th Ed. Baltimore: Lippincott Williams & Wilkins, 2000.

89. Franklin, P. J., D. J. Green, and N. T. Cable. The influence of thermoregulatory mechanisms on post-exercise hypotension in humans. J. Physiol. 470: 231–241, 1993.

90. Franklin, S. S., S. A. Khan, N. D. Wong, M. G. Larson, and D. Levy. Is pulse pressure useful in predicting coronary heart disease? The Framingham Heart Study. Circulation 100: 354–360, 1999.

91. Friday, W. W. Physiological, Psychological, and Behavioral Effects of Aerobic Exercise, and Cognitive Experiential Therapy on Juvenile Delinquent Males. Columbus, OH: The Ohio State University, 1987.

92. Gallagher, J. S. The Chronic Effects of a Weight Training Program on Blood Pressure in Adolescent Males. Philadelphia: Temple University, 1987.

93. Gasowski, J., R. H. Fagard, J. A. Staessen, et al. Pulsatile blood pressure component as predictor of mortality in hypertension: a meta-analysis of clinical trial control groups. J. Hypertens. 20: 145–151, 2002.

94. Geyssant, A., G. Geelen, C. Denis, et al. Plasma vasopressin, renin activity, and aldosterone: effect of exercise and training. Eur. J. Appl. Physiol. Occup. Physiol. 46: 21–30, 1981.

95. Gibbons, R. J., G. J. Balady, J. W. Beasely, et al. ACC/AHA guidelines for exercise testing: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J. Am. Coll. Cardiol. 30: 260–315, 1997.

96. Gillett, P. A., A. T. White, M. S. Caaserta. Effect of exercise and/or fitness education on fitness in older, sedentary, obese women. J. Aging Phys. Activity 4: 42–55, 1996.

97. Giri, S., P. D. Thompson, F. J. Kiernan, et al. Clinical and angiographic characteristics of exertion-related acute myocardial infarction. JAMA 282: 1731–1736, 1999.

98. Gordon, N. F. Hypertension. In: ACSM’s Exercise Management for Persons with Chronic Diseases and Disabilities, J. L. Durstine (Ed.). Champaign, IL: Human Kinetics, 1997, pp. 59–63.

99. Greenwood, J. P., J. B. Stoker, and D. A. Mary. Single-unit sympathetic discharge: quantitative assessment in human hypertensive disease. Circulation 100: 1305–1310, 1999.

100. Gutin., and S. Owens. Role of exercise intervention in improving body fat distribution and risk profile in children. Am. J. Hum. Biol. 11: 237–247, 1999.

101. Haapanen, N., S. Miilunpalo, I. Vuori, P. Oja, and M. Pasanen. Association of leisure time physical activity with the risk of coronary heart disease, hypertension and diabetes in middle-aged men and women. Int. J. Epidemiol. 26: 739–747, 1997.

102. Hagberg, J. M., S. J. Montain, and W. H. Martin, III. Blood pressure and hemodynamic responses after exercise in older hypertensives. J. Appl. Physiol. 63: 270–276, 1987.

103. Hagberg, J. M., S. J. Montain, W. H. Martin, III, and A. A. Ehsani. Effect of exercise training in 60-to 69-year-old persons with essential hypertension. Am. J. Cardiol. 64: 348–353, 1989.

104. Hagberg, J. M., J. E. Graves, M. Limacher, et al. Cardiovascular responses of 70- to 79-yr-old men and women to exercise training. J. Appl. Physiol. 66: 2589–2594, 1989.

105. Hagberg, J. M., R. E. Ferrell, D. R. Dengel, and K. R. Wilund. Exercise training-induced blood pressure and plasma lipid improvements in hypertensives may be genotype dependent. Hypertens. 34: 18–23, 1999.

106. Hagberg, J. M., J. J. Park, and M. D. Brown. The role of exercise training in the treatment of hypertension: an update. Sports Med. 30: 193–206, 2000.

107. Hajjar, I, and T. A. Kotchen. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1998–2000. JAMA 290: 199–206, 2003.

108. Halbert, J. A., C. A. Silagy, P. Finucane, R. T. Withers, P. A. Hamdorf, and G. R. Andrews. The effectiveness of exercise training in lowering blood pressure: a meta-analysis of randomized controlled trials of 4 weeks or longer. J. Hum. Hypertens. 11: 641–649, 1997.

109. Halliwill, J. R., J. A. Taylor, and D. L. Eckberg. Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J. Physiol. 495 ( Pt. 1): 279–288, 1996.

110. Halliwill, J. R. Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc. Sport Sci. Rev. 29: 65–70, 2001.

111. Hamdorf, P. A., R. T. Withers, R. K. Penhall, and M. V. Haslam. Physical training effects on the fitness and habitual activity patterns of elderly women. Arch. Phys. Med. Rehabil. 73: 603–608, 1992.

112. Hannum, S. M., and F. W. Kasch. Acute postexercise blood pressure response of hypertensive and normotensive men. Scand. J. Sports Sci. 3: 11–15, 1981.

113. Hansen, H. S., K. Froberg, N. Hyldebrandt, and J. R. Nielsen. A controlled study of eight months of physical training and reduction of blood pressure in children: the Odense schoolchild study. Br. Med. J. 303: 682–685, 1991.

114. Hara, K., and J. S. Floras. Effects of naloxone on hemodynamics and sympathetic activity after exercise. J. Appl. Physiol. 73: 2028–2035, 1992.

115. Hara, K., and J. S. Floras. Influence of naloxone on muscle sympathetic nerve activity, systemic and calf haemodynamics and ambulatory blood pressure after exercise in mild essential hypertension. J. Hypertens. 13: 447–461, 1994.

116. Harris, K. A., and R. G. Holly. Physiological response to circuit weight training in borderline hypertensive subjects. Med. Sci. Sports Exerc. 19: 246–252, 1987.

117. Harshfield, G. A., L. M. Dupaul, B. S. Alpert, et al. Aerobic fitness and the diurnal rhythm of blood pressure in adolescents. Hypertens. 15: 810–814, 1990.

118. Haskell, W. L. Health consequences of physical activity: understanding and challenges regarding dose-response. Med. Sci. Sports Exerc. 26: 649–660, 1994.

119. Hayashi, T., K. Tsumura, C. Suematsu, K. Okada, S. Fujii, and G. Endo. Walking to work and the risk for hypertension in men: the Osaka Health Survey. Ann. Intern. Med. 130: 21–26, 1999.

120. Headley, S. A., J. M. Claiborne, C. R. Lottes, and C. G. Korba. Hemodynamic responses associated with post-exercise hypotension in normotensive black males. Ethn. Dis. 6: 190–201, 1996.

121. Headley, S. A., T. G. Keenan, and T. M. Manos. Renin and hemodynamic responses to exercise in borderline hypertensives. Ethn. Dis. 8: 312–318, 1998.

122. Henriksen, E. J. Effects of acute exercise and exercise training on insulin resistance. J. Appl. Physiol. 93: 788–796, 2002.

123. Hespel, P., P. Lijnen, R. Van Hoof, et al. Effects of physical endurance training on the plasma renin-angiotensin-aldosterone system in normal man. J. Endocrinol. 116: 443–449, 1988.

124. Higashi, Y., S. Sasaki, S. Kurisu, et al. Regular aerobic exercise augments endothelium dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 100: 1194–1202, 1999.

125. Higashi, Y., S. Sasaki, N. Sasaki, et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertens. 33: 591–597, 1999.

126. Hill, D. W., M. A. Collins, K. J. Cureton, and J. J. Demello. Blood pressure response after weight training exercise. J. Appl. Sport Sci. Res. 3: 44–47, 1989.

127. Hiroyuki, D., T. G. Allison, R. W. Squires, et al. Peak exercise blood pressure stratified by age and gender in apparently healthy subjects. Mayo Clin. Proc. 71: 445–452, 1996.

128. Hoberg, E., G. Schuler, B. Kunze, et al. Silent myocardial ischemia as apotential link between lack of premonitoring symptoms and increased risk of cardiac arrest during physical stress. Am. J. Cardiol. 65: 583–589, 1990.

129. Howley, E. T. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med. Sci. Sports Exerc. 33( Suppl.): S364–S369, 2001.

130. Huonker, M., M. Halle, and J. Keul. Structural and functional adaptations of the cardiovascular system by training. Int. J. Sports Med. 17( Suppl. 3): S164–172, 1996.

131. Irving, J. B., R. A. Bruce, and T. A. Derouen. Variations in and significance of systolic pressure during maximal exercise (treadmill) testing: relation to severity of coronary artery disease and cardiac mortality. Am. J. Cardiol. 39: 841–848, 1977.

132. Ishikawa-Takata, K., T. Ohta, and H. Tanaka. How much exercise is required to reduce blood pressure in essential hypertensives: a dose-response study. Am. J. Hypertens. 16: 629–633, 2003.

133. Jakicic, J. M., K. Clark, E. Coleman, et al. American College of Sports Medicine position stand: appropriate intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 33: 2145–2156, 2001.

134. Jennings, G., L. Nelson, P. Nestel, M. Esler, P. Korner, D. Burton, and J. Bazelmans. The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function, and glucose utilization in man: a controlled study of four levels of activity. Circulation 73: 30–40, 1986.

135. Jennings, G. L., G. Deakin, P. Korner, I. Meredith, B. Kingwell, and L. Nelson. What is the dose-response relationship between exercise training and blood pressure? Ann. Med. 23: 313–318, 1991.

136. Jessup, J. V., D. T. Lowenthal, M. L. Pollock, and T. Turner. The effects of endurance exercise training on ambulatory blood pressure in normotensive older adults. Geriatr. Nephrol. Urol. 8: 103–109, 1998.

137. Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The 6th Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI). Arch. Intern. Med. 157: 2413–2446, 1997.

138. Jones, A. W., L. J. Rubin, and L. Magliola. Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent. J. Appl. Physiol. 87: 1172–1177, 1999.

139. Jones, T. M. Regular Aerobic Exercise and Blood Pressure in Elementary School Children: A Randomized Clinical Trial. Chapel Hill, North Carolina: University of North Carolina @ Chapel Hill; 1988.

140. Julius, S., T. Gudbrandsson, K. Jamerson, S. Tariq Shahab, and O. Andersson. The hemodynamic link between insulin resistance and hypertension. J. Hypertens. 9: 983–986, 1991.

141. Kajekar, R., C. Y. Chen, T. Mutoh, and A. C. Bonham. Gaba(a) receptor activation at medullary sympathetic neurons contributes to postexercise hypotension. Am. J. Physiol. Heart Circ. Physiol. 282: H1615–H1624, 2002.

142. Kannel, W. B., P. A. Wolf, D. L. Mcgee, T. R. Dawber, P. Mcnamara, and W. P. Castelli. Systolic blood pressure, arterial rigidity, and risk of stroke. JAMA 245: 1225–1229, 1981.

143. Katz, J., and B. R. A. Wilson. The effects of a six-week, low intensity nautilus circuit training program on resting blood pressure in females. J. Sports Med. Phys. Fitness 32: 299–302, 1992.

144. Kaufman, F. L., R. L. Hughson, and P. Schaman. Effect of exercise on recovery blood pressure in normotensive and hypertensive subjects. Med. Sci. Sports Exerc. 19: 17–20, 1987.

145. Kelley, G., and P. Mcclellan. Antihypertensive effects of aerobic exercise: a brief meta-analytic review of randomized controlled trials. Am. J. Hypertens. 7: 115–119, 1994.

146. Kelley, G., and Z. V. Tran. Aerobic exercise and normotensive adults: a meta-analysis. Med. Sci. Sports Exerc. 27: 1371–1377; 1995.

147. Kelley, G. A. Aerobic exercise and resting blood pressure among women: a meta-analysis. Prev. Med. 28: 264–275, 1999.

148. Kelley, G. A., and K. S. Kelley. Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertens. 35: 838–843, 2000.

149. Kelley, G. A., K. S. Kelley, and Z. V. Tran. Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev. Cardiol. 4: 73–80, 2001.

150. Kelley, G. A., K. S. Kelley, and Z. V. Tran. Walking and resting blood pressure in adults: a meta-analysis. Prev. Med. 33: 120–127, 2001.

151. Kelley, G. A., and K. K. Sharpe. Aerobic exercise and resting blood pressure in older adults: a meta-analytic review of randomized controlled trials. J. Gerontol. A Biol. Sci. Med. Sci. 56: M298–M303, 2001.

152. Kelley, G. A., K. S. Kelley, Z. V. Tran. The effects of exercise on resting blood pressure in children and adolescents: a meta-analysis of randomized controlled trials. Prev. Cardiol. 6: 8–16, 2003.

153. Kenney, M. J., and D. R. Seals. Postexercise hypotension: key features, mechanisms, and clinical significance. Hypertens. 22: 653–664, 1993.

154. King, A. C., W. L. Haskell, C. B. Taylor, H. C. Kraemer, and R. F. Debusk. Group- vs home-based exercise training in healthy older men and women: a community- based clinical trial. JAMA 266: 1535–1542, 1991.

155. Kingwell, B. A. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 14: 1685–1696, 2000.

156. Kingwell, B. A., B. Tran, J. D. Cameron, G. L. Jennings, and A. M. Dart. Enhanced vasodilation to acetylcholine in athletes is associated with lower plasma cholesterol. Am. J. Physiol. 270: H2008–H2013, 1996.

157. Kitamura, K., C. R. Jorgensen, F. L. Gobel, H. L. Taylor, and Y. Wang. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32: 516–522, 1972.

158. Kiveloff B., and O. Huber. Brief maximal isometric exercise in hypertension. J. Am. Geriatr. Soc. 19: 1006–1012, 1971.

159. Kohl, H. W., M. Z. Nichaman, R. F. Frankowski, and S. N. Blair. Maximal exercise hemodynamics and risk of mortality in apparently healthy men and women. Med. Sci. Sports Exerc. 28: 601–609, 1996.

160. Kohno, K., H. Matsuoka, K. Takenaka, et al. Depressor effect by exercise training is associated with amelioration of hyperinsulinemia and sympathetic overactivity. Intern. Med. 39: 1013–1019, 2000.

161. Kohrt, W. M., M. T. Malley, A. R. Coggan, et al. Effects of gender, age, and fitness level on response of VO2max to training in 60–71 yr olds. J. Appl. Physiol. 71: 2004–2011, 1991.

162. Kokkinos, P. F., P. Narayan, J. A. Colleran, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N. Engl. J. Med. 333: 1462–1467, 1995.

163. Krául, J., J. Chrastek, and J. Adamirova. The hypotensive effect of physical activity. In: Prevention of Ischemic Heart Disease: Principles and Practice, W. Rabb (Ed.). Springfield, IL: Charles C Thomas, 1966, pp. 359–371.

164. Kulics, J. M., H. L. Collins, and S. E. Dicarlo. Postexercise hypotension is mediated by reductions in sympathetic nerve activity. Am. J. Physiol. 276: H27–H32, 1999.

165. Lash, J. M., and H. G. Bohlen. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J. Appl. Physiol. 72: 2052–2062, 1992.

166. Lauer, R. M., T. L. Burns, W. R. Clarke, and L. T. Mahoney. Childhood predictors of future blood pressure. Hypertens. 18( Suppl. I): I-74–I-81, 1991.

167. Laughlin, M. H., R. J. Korthuis, D. J. Duncker, and R. J. Bache. Control of blood flow to cardiac and skeletal muscle during exercise. In: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems, L. B. Rowelland J. T. Sheperd (Eds.). Bethesda, MD: American Physiological Society, 1996, pp. 705–769.

168. Laughlin, M. H., W. G. Schrage, R. M. Mcallister, H. A. Garverick, and A. W. Jones. Interaction of gender and exercise training: vasomotor reactivity of porcine skeletal muscle arteries. J. Appl. Physiol. 90: 216–227, 2001.

169. Linder, C. W., R. H. Durant, and O. M. Mahoney. The effect of physical conditioning on serum lipids and lipoproteins in white male adolescents. Med. Sci. Sports Exerc. 15: 232–236, 1983.

170. Macdonald, J. R., J. M. Rosenfeld, M. A. Tarnopolsky, C. D. Hogben, C. S. Ballantyne, and J. D. Macdougall. Post exercise hypotension is sustained during subsequent bouts of mild exercise and simulated activities of daily living. J. Hum. Hypertens. 15: 567–571, 2001.

171. Maeda, S., T. Miyauchi, T. Kakiyama, et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 a, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 69: 1005–1016, 2001.

172. Manolio, T. A., G. L. Burke, P. J. Savage, S. Sidney, J. M. Gardin, and A. Oberman. Exercise blood pressure response and 5-year risk of elevated blood pressure in a cohort of young adults: the CARDIA study. Am. J. Hypertens. 7: 234–241, 1994.

173. Marceau, M., N. Kouamé, Y. Lacourci, and J. Cléroux. Effects of different training intensities on 24-hour blood pressure in hypertensive subjects. Circulation 88: 2803–2811, 1993.

174. Matsukawa, T., E. Gotoh, S. Uneda, et al. Augmented sympathetic nerve activity in response to stressors in young borderline hypertensive men. Acta Physiol. Scand. 141: 157–165, 1991.

175. Matsukawa, T., T. Mano, E. Gotoh, and M. Ishii. Elevated sympathetic nerve activity in patients with accelerated essential hypertension. J. Clin. Invest. 92: 25–28, 1993.

176. Matthews, C. E., R. R. Pate, K. L. Jackson, et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J. Clin. Epidemiol. 51: 29–35, 1998.

177. Meredith, I. T., G. L. Jennings, M. D. Esler, et al. Time-course of the antihypertensive and autonomic effects of regular endurance exercise in human subjects. J. Hypertens. 8: 859–866, 1990.

178. Meredith, I. T., P. Friberg, G. L. Jennings, et al. Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertens. 18: 575–582, 1991.

179. Minson, C. T., J. R. Halliwill, T. M. Young, and M. J. Joyner. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation 101: 862–868, 2000.

180. Mittleman, M. A., M. Maclure, G. H. Tofler, J. B. Sherwood, R. J. Goldberg, and J. E. Muller. Triggering of acute myocardial infarction by heavy physical exertion. N. Engl. J. Med. 329: 1677–1683, 1993.

181. Miyai, N., M. Arita, K. Miyashita, I. Moriaka, T. Shiraishi, and I. Nishio. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertens. 39: 761–766, 2002.

182. Mohiaddin, R. H., S. R. Underwood, H. G. Bogren, et al. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br. Heart J. 62: 90–96, 1989.

183. Morlin, C., B. G. Wallin, and B. M. Eriksson. Muscle sympathetic activity and plasma noradrenaline in normotensive and hypertensive man. Acta Physiol. Scand. 119: 117–121, 1983.

184. Motoyama, M., Y. Sunami, F. Kinoshita, et al. Blood pressure lowering effect of low intensity aerobic training in elderly hypertensive patients. Med. Sci. Sports Exerc. 30: 818–823, 1998.

185. Moul, J. The Effects of 16-Week Walking and 16-Week Weight-Training Programs on the Performance of Men and Women Ages 65–77 on the Ross Information Processing Assessment. Greensboro, North Carolina: University of North Carolina at Greensboro, 1993.

186. Mundal, R., S. E. Kjeldsen, L. Sandvik, G. Erikssen, E. Thaulow, and J. Erikssen. Exercise blood pressure predicts cardiovascular mortality in middle-aged men. Hypertens. 24: 56–62, 1994.

187. Mundal, R., S. E. Kjeldsen, L. Sandvik, G. Erikssen, E. Thaulow, and J. Erikssen. Exercise blood pressure predicts mortality from myocardial infarction. Hypertens. 27 ( Pt. 1): 324–329, 1996.

188. Murphy, M., A. Nevill, C. Neville, S. Biddle, and A. Hardman. Accumulating brisk walking for fitness, cardiovascular risk, and psychological health. Med. Sci. Sports Exerc. 34: 1468–1474, 2002.

189. Myrtek, M., and V. Villinger. Psychologische und physiologische Wirkungen eines fünfwöchigen Ergometertrainings bei Gesunden. Med. Klin. 71: 1623–1630, 1976.

190. Myslivecek, P. R., C. A. Brown, and L. A. Wolfe. Effects of physical conditioning on cardiac autonomic function in healthy middle-aged women. Can. J. Appl. Physiol. 27: 1–18, 2002.

191. National Institutes of Health and National Heart, Lung, and Blood Institute. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the Evidence Report. Obes. Res. 6( Suppl. 2): 51S–209S, 1998.

192. Naughton, J., and R. Haider. Methods of exercise testing. In: Exercise Testing and Exercise Training in Coronary Heart Disease, J. P. Naughton, H. K. Hellerstein, and I. C. Mohler (Eds.). New York: Academic Press, 1973, p. 79.

193. Nelson, L., G. L. Jennings, M. D. Esler, and P. I. Korner. Effect of changing levels of physical activity on blood-pressure and haemodynamics in essential hypertension. Lancet 2: 473–476, 1986.

194. Nelson, R. R., F. L. Gobel, C. R. Jorgensen, et al. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50: 1179–1189, 1974.

195. Noble, B. J., G. A. Borg, I. Jacobs, R. Ceci, and P. Kaiser. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med. Sci. Sports Exerc. 15: 523–528, 1983.

196. O’Connor, P. J., C. X. Bryant, J. P. Veltri, and S. M. Gebhardt. State anxiety and ambulatory blood pressure following resistance exercise in females. Med. Sci. Sports Exerc. 25: 516–521, 1993.

197. Okumiya, K., K. Matsubayashi, T. Wada, S. Kimura, Y. Doi, and T. Ozawa. Effects of exercise on neurobehavioral function in community dwelling older people more than 75 years of age. J. Am. Geriatr. Soc. 44: 569–572, 1996.

198. Oluseye, K. A. Cardiovascular responses to exercise in Nigerian women. J. Hum. Hypertens. 4: 77–79, 1990.

199. Osada, N., B. R. Chaitman, L. W. Miller, et al. Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J. Am. Coll. Cardiol. 31: 577–582, 1998.

200. Paffenbarger, R. S., Jr., A. L. Wing, R. T. Hyde, and D. L. Jung. Physical activity and incidence of hypertension in college alumni. Am. J. Epidemiol. 117: 245–257, 1983.

201. Paffenbarger, R. S., Jr., D. L. Jung, R. W. Leung, and R. T. Hyde. Physical activity and hypertension: an epidemiological view. Ann. Med. 23: 319–327, 1991.

202. Pate, R. R., M. Pratt, S. N. Blair, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273: 402–407, 1995.

203. Patil, R. D., S. E. Dicarlo, and H. L. Collins. Acute exercise enhances nitric oxide modulation of vascular response to phenylephrine. Am. J. Physiol. 265: H1184–H1188, 1993.

204. Paulev, P. E., R. Jordal, O. Kristensen, and J. Ladefoged. Therapeutic effect of exercise on hypertension. Eur. J. Appl. Physiol. Occup. Physiol. 53: 180–185, 1984.

205. Pereira, M. A., A. R. Folsom, P. G. Mcgovern, et al. Physical activity and incident hypertension in black and white adults: the Atherosclerosis Risk in Communities Study. Prev. Med. 28: 304–312, 1999.

206. Pescatello, L. S., G. W. Mack, C. N. Leach, Jr., and E. R. Nadel. Thermoregulation in mildly hypertensive men during beta-adrenergic blockade. Med. Sci. Sports Exerc. 22: 222–228, 1990.

207. Pescatello, L. S., A. E. Fargo, C. N. Leach, Jr., and H. H. Scherzer. Short-term effect of dynamic exercise on arterial blood pressure. Circulation 83: 1557–1561, 1991.

208. Pescatello, L. S., B. Miller, P. G. Danias, et al. Dynamic exercise normalizes resting blood pressure in mildly hypertensive premenopausal women. Am. Heart J. 138: 916–921, 1999.

209. Pescatello, L. S., and J. M. Kulikowich. The after effects of dynamic exercise on ambulatory blood pressure. Med. Sci. Sports Exerc. 33: 1855–1861, 2001.

210. Pescatello, L. S., L. Bairos, J. L. Vanheest, et al. Postexercise hypotension differs between white and black women. Am. Heart J. 145: 364–370, 2003.

211. Piepoli, M., A. J. S. Coats, S. Adamopoulos, et al. Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J. Appl. Physiol. 75: 1807–1814, 1993.

212. Pollock, M. L., B. A. Franklin, G. J. Balady, et al. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; position paper endorsed by the American College of Sports Medicine. Circulation 101: 828–833, 2000.

213. Posner, J. D., K. M. Gorman, L. W. Landsberg, et al. Low to moderate intensity endurance training in healthy older adults: physiological responses after four months. J. Am. Geriatr. Soc. 40: 1–7, 1992.

214. Quinn, T. J. Twenty-four hour, ambulatory blood pressure responses following exercise: impact of exercise intensity. J. Hum. Hypertens. 14: 547–553, 2000.

215. Radaelli, A., M. Piepoli, S. Adamopoulos, et al. Effects of mild physical activity, atenolol and the combination on ambulatory blood pressure in hypertensive subjects. J. Hypertens. 10: 1279–1282, 1992.

216. Rankinen, T., J. Gagnon, L. Perusse, et al. AGT M235T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE Family Study. Am. J. Physiol. Heart Circ. Physiol. 279: H368–374, 2000.

217. Rankinen, T., L. Perusse, J. Gagnon, et al. Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the HERITAGE Family Study. J. Appl. Physiol. 88: 1029–1035, 2000.

218. Rankinen, T., T. Rice, L. Perusse, et al. NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study. Hypertens. 36: 885–889, 2000.

219. Rao, S. P., H. L. Collins, and S. E. Dicarlo. Postexercise alpha-adrenergic receptor hyporesponsiveness in hypertensive rats is due to nitric oxide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282: R960–R968, 2002.

220. Ray, C. A., and K. M. Hume. Sympathetic neural adaptations to exercise training in humans: insights from microneurography. Med. Sci. Sports Exerc. 30: 387–391, 1998.

221. Ray, C. A. Sympathetic adaptations to one-legged training. J. Appl. Physiol. 86: 1583–1587, 1999.

222. Ray, C. A., and D. I. Carrasco. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 279: H245–H249, 2000.

223. Ready, A. E., B. Naimark, J. Ducas, et al. Influence of walking volume on health benefits in women post-menopause. Med. Sci. Sports Exerc. 28: 1097–1105, 1996.

224. Rice, T., P. An, J. Gagnon, et al. Heritability of heart rate and blood pressure response to exercise training in the HERITAGE Family Study. Med. Sci. Sports Exerc. 34: 972–979, 2002.

225. Richardson, P. D., M. J. Davies, and G. V. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2: 941–944, 1989.

226. Rivera, M. A., M. Echegaray, T. Rankinen, et al. TGF-beta(1) gene-race interactions for resting and exercise blood pressure in the HERITAGE Family Study. J. Appl. Physiol. 91: 1808–1813, 2001.

227. Roltsch, M. H., T. Mendez, K. R. Wilund, and J. M. Hagberg. Acute resistive exercise does not affect ambulatory blood pressure in young men and women. Med. Sci. Sports Exerc. 33: 881–886, 2001.

228. Ronda, M. U. P. B., M. J. N. N. Alves, A. M. F. W. Braga, et al. Postexercise blood pressure reduction in elderly hypertensive patients. J. Am. Coll. Cardiol. 39: 676–682, 2002.

229. Rueckert, P. A., P. R. Slane, D. L. Lillis, and P. Hanson. Hemodynamic patterns and duration of post-dynamic exercise hypotension in hypertensive humans. Med. Sci. Sports Exerc. 28: 24–32, 1996.

230. Sakai, T., M. Ideishi, S. Miura, et al. Mild exercise activates renal dopamine system in mild hypertensives. J. Hum. Hypertens. 12: 355–362, 1998.

231. Sawada, S., H. Tanaka, M. Funakoshi, M. Shindo, S. Kono, and T. Ishiko. Five-year prospective study on blood pressure and maximal oxygen uptake. Clin. Exp. Pharmacol. Physiol. 20: 483–487, 1993.

232. Schettini, C., M. Bianchi, N. Fernando, E. Sandoya, and H. Senra. Ambulatory blood pressure normality and comparison with other measurements. Hypertens. 34 ( Pt 2): 818–825, 1999.

233. Schiffrin, E. L. Endothelin and endothelin antagonists in hypertension. J. Hypertens. 16: 1891–1895, 1998.

234. Seals, D. R., J. M. Hagberg, B. F. Hurley, A. A. Ehsani, and J. O. Holloszy. Endurance training in older men and women. I. Cardiovascular responses to exercise. J. Appl. Physiol. 57: 1024–1029, 1984.

235. Seals, D. R., and M. J. Reiling. Effect of regular exercise on 24-hour arterial pressure in older hypertensive humans. Hypertens. 18: 583–592, 1991.

236. Sexton, W. L., R. J. Korthuis, and M. H. Laughlin. High-intensity exercise training increases vascular transport capacity of rat hindquarters. Am. J. Physiol. 254: H274–H278, 1988.

237. Sexton, W. L., and M. H. Laughlin. Influence of endurance exercise training on distribution of vascular adaptations in rat skeletal muscle. Am. J. Physiol. 266: H483–H490, 1994.

238. Shaper, A.G., G. Wannamethee, and M. Walker. Physical activity, hypertension and risk of heart attack in men without evidence of ischaemic heart disease. J. Hum. Hypertens. 8: 3–10, 1994.

239. Shenberger, J. S., G. J. Leaman, M. M. Neumyer, T. I. Musch, and L. I. Sinoway. Physiologic and structural indices of vascular function in paraplegics. Med. Sci. Sports Exerc. 22: 96–101, 1990.

240. Silva, G. J., P. C. Brum, C. E. Negrao, and E. M. Krieger. Acute and chronic effects of exercise on baroreflexes in spontaneously hypertensive rats. Hypertens. 30: 714–719, 1997.

241. Singh, J. P., M. G. Larson, T. A. Manolio, et al. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension: the Framingham Heart Study. Circulation 99: 1831–1836, 1999.

242. Somers, V. K., J. Conway, J. Johnston, and P. Sleight. Effects of endurance training on baroreflex sensitivity and blood pressure in borderline hypertension. Lancet 337: 1363–1368, 1991.

243. Somers, V. K., J. Conway, and A. Coats. Postexercise hypotension is not sustained in normal and hypertensive humans. Hypertens. 18: 211–215, 1991.

244. Spier, S. A., M. H. Laughlin, and M. D. Delp. Effects of acute and chronic exercise on vasoconstrictor responsiveness of rat abdominal aorta. J. Appl. Physiol. 87: 1752–1757, 1999.

245. Staessen, J., A. Amery, and R. Fagard. Isolated systolic hypertension in the elderly. J. Hypertens. 9: 393–405, 1990.

246. Staessen, J. A., J. Gasowski, J. G. Wang, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet 355: 865–872, 2000.

247. Stamler, J., G. Rose, R. Stamler, P. Elliott, A. Dyer, and M. Marmot. Intersalt study findings: public health and medical care implications. Hypertens. 14: 570–577, 1989.

248. Starr, M. Brave heart, broken heart. Newsweek 126 ( 34): 70–71, 1995.

249. Taddei, S., A. Virdis, L. Ghiadoni, I. Sudano, M. Notari, and A. Salvetti. Vasoconstriction to endogenous endothelin-1 is increased in the peripheral circulation of patients with essential hypertension. Circulation 100: 1680–1683, 1999.

250. Taylor-Tolbert, N. S., D. R. Dengel, M. D. Brown, et al. Ambulatory blood pressure after acute exercise in older men with essential hypertension. Am. J. Hypertens. 13: 44–51, 2000.

251. Thompson, P. D. The cardiovascular complications of vigorous physical activity. Arch. Intern. Med. 156: 2297–2302, 1996.

252. Thompson, P. D., S. F. Crouse, B. Goodpaster, D. Kelley, N. Moyna, and L. Pescatello. The acute versus the chronic response to exercise. Med. Sci. Sports Exerc. 33: S438–S445; discussion S452–S453, 2001.

253. Thoren, P., J. S. Floras, P. Hoffmann, and D. R. Seals. Endorphins and exercise: physiological mechanisms and clinical implications. Med. Sci. Sports Exerc. 22: 417–428, 1990.

254. Tipton, C. M., R. D. Matthes, K. D. Marcus, K. A. Rowlett, and J. R. Leininger. Influences of exercise intensity, age, and medication on resting systolic blood pressure of SHR populations. J. Appl. Physiol. 55: 1305–1310, 1983.

255. Tsai, J. C., J. C. Liu, C. C. Kao, et al. Beneficial effects on blood pressure and lipid profile of programmed exercise training in subjects with white coat hypertension. Am. J. Hypertens. 15: 571–576, 2002.

256. Tsutsumi, T. The Effects of Strength Training on Mood, Self-Efficacy, Cardiovascular Reactivity and Quality of Life in Older Adults. Boston: Boston University, 1997.

257. U.S. Department of Health and Human Services. Physical activity and health: a report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, and National Center for Chronic Disease Prevention and Health Promotion, 1996.

258. Urata, H., Y. Tanabe, A. Kiyonaga, et al. Antihypertensive and volume-depleting effects of mild exercise on essential hypertension. Hypertens. 9: 245–252, 1987.

259. Vaitkevicius, P. V., J. L. Fleg, J. H. Engel, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88: 1456–1462, 1993.

260. Van Hoof, R., P. Hespel, R. Fagard, P. Lijnen, J. Staessen, and A. Amery. Effect of endurance training on blood pressure at rest, during exercise and during 24 h, during exercise and during 24 h in sedentary men. Am. J. Cardiol. 63: 945–949, 1989.

261. Van Hoof, R., F. Macor, P. Lijnen, et al. Effect of strength training on blood pressure measured at various conditions in sedentary men. Int. J. Sports Med. 17: 415–422, 1996.

262. Vandongen, R., D. A. Jenner, C. Thompson, et al. A controlled evaluation of a fitness and nutrition intervention program on cardiovascular health in 10- to 12-year old children. Prev. Med. 24: 9–22, 1995.

263. Vasan, R. S., M. G. Larson, E. P. Leip, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 345: 1291–1297, 2001.

264. Vasan, R.S., A. Beiser, S. Seshadri, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA 287: 1003–1010, 2002.

265. Verdecchia, P. Prognostic value of ambulatory blood pressure: current evidence and clinical implications. Hypertens. 35: 844–851, 2000.

266. Wallace, J. P., P. G. Bogle, B. A. King, J. B. Krasnoff, and C. A. Jastremski. A comparison of 24-h average blood pressures and blood pressure load following exercise. Am. J. Hypertens. 10: 728–734, 1997.

267. Wallace, J. P., P. G. Bogle, B. A. King, J. B. Krasnoff, and C. A. Jastremski. The magnitude and duration of ambulatory blood pressure reduction following acute exercise. J. Hum. Hypertens. 13: 361–366, 1999.

268. Wallace, J. P. Exercise in hypertension: a clinical review. Sports Med. 33: 585–598, 2003.

269. Wallin, B. G., and G. Sundlof. A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertens. 1: 67–77, 1979.

270. Wang, J. S., C. J. Jen, and H. I. Chen. Effects of chronic exercise and deconditioning on platelet function in women. J. Appl. Physiol. 83: 2080–2085, 1997.

271. Whelton, P. K., J. He, L. J. Appel, et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA 288: 1882–1888, 2002.

272. Whelton, S. P., A. Chin, X. Xin, and J. He. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 136: 493–503, 2002.

273. Wiegman, D. L., P. D. Harris, I. G. Joshua, and F. N. Miller. Decreased vascular sensitivity to norepinephrine following exercise training. J. Appl. Physiol. 51: 282–287, 1981.

274. Wijnen, J. A., H. Kuipers, M. J. Kool, et al. Vessel wall properties of large arteries in trained and sedentary subjects. Basic Res. Cardiol. 86( Suppl. 1): 25–29, 1991.

275. Wijnen, J. A. G., M. J. F Kool, M. A. van Baak, et al. Effect of exercise training on ambulatory blood pressure. Int. J. Sports Med. 15: 10–15, 1994.

276. Wilcox, R. G., T. Bennett, A. M. Brown, and I. A. Macdonald. Is exercise good for high blood pressure? Br. Med. J. 285: 767–769, 1982.

277. Wiley, R. L., C. L. Dunn, R. H. Cox, N. A. Hueppchen, and M. S. Scott. Isometric exercise training lowers resting blood pressure. Med. Sci. Sports Exerc. 24: 749–754, 1992.

278. Williams, M. A., J. L. Fleg, P. A. Ades, et al. Secondary prevention of coronary heart disease in the elderly (with emphasis on patients ≥ 75 years of age). An American Heart Association Scientific Statement from the Council on Clinical Cardiology Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation 105: 1735–1743, 2002.

279. Williams, S. M., J. H. Addy, J. A. Phillips, III, et al. Combinations of variations in multiple genes are associated with hypertension. Hypertens. 36: 2–6, 2000.

280. Willich, S. N., M. Lewis, H. Löwel, H. R. Arntz, F. S chubert, and R. Schröder. Physical exertion as a trigger of acute myocardial infarction. N. Engl. J. Med. 329: 1684–1690, 1993.

281. Wilmore, J. H., P. R. Stanforth, J. Gagnon, et al. Heart rate and blood pressure changes with endurance training: the Heritage Family Study. Med. Sci. Sports Exerc. 33: 107–116, 2001.

282. Wood, R. H., R. Reyes, M. A. Welsch, et al. Concurrent cardiovascular and resistance training in healthy older adults. Med. Sci. Sports Exerc. 33: 1751–1758, 2001.

283. World Health Organization-International Society of Hypertension. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on the management of hypertension. J. Hypertens. 21: 1983–1992, 2003.

284. Yen, M. H., J. H. Yang, J. R. Sheu, Y. M. Lee, and Y. A. Ding. Chronic exercise enhances endothelium-mediated dilation in spontaneously hypertensive rats. Life Sci. 57: 2205–2213, 1995.

Cited By:

This article has been cited 264 time(s).

Hypertension
Antihypertensive Effects of Exercise Among Those With Resistant Hypertension
Ash, GI; MacDonald, HV; Pescatello, LS
Hypertension, 61(1): E1.
10.1161/HYPERTENSIONAHA.111.00126
CrossRef
Physician and Sportsmedicine
Cardiorespiratory Screening in Elite Endurance Sports Athletes: The Quebec Study
Turmel, J; Poirier, P; Bougault, V; Blouin, E; Belzile, M; Boulet, LP
Physician and Sportsmedicine, 40(3): 55-65.
10.3810/psm.2012.09.1982
CrossRef
Circulation Journal
Physical Activity, Cardiorespiratory Fitness, and Exercise Training in Primary and Secondary Coronary Prevention
Swift, DL; Lavie, CJ; Johannsen, NM; Arena, R; Earnest, CP; O'Keefe, JH; Milani, RV; Blair, SN; Church, TS
Circulation Journal, 77(2): 281-292.
10.1253/circj.CJ-13-0007
CrossRef
Experimental Biology and Medicine
Exercise training improves endothelial function in young prehypertensives
Beck, DT; Casey, DP; Martin, JS; Emerson, BD; Braith, RW
Experimental Biology and Medicine, 238(4): 433-441.
10.1177/1535370213477600
CrossRef
Research in Sports Medicine
Caffeine Ingestion and Intense Resistance Training Minimize Postexercise Hypotension in Normotensive and Prehypertensive Men
Astorino, TA; Martin, BJ; Schachtsiek, L; Wong, K
Research in Sports Medicine, 21(1): 52-65.
10.1080/15438627.2012.738443
CrossRef
Canadian Journal of Cardiology
The Evolution of a Canadian Hypertension Education Program Recommendation: The Impact of Resistance Training on Resting Blood Pressure in Adults as an Example
Rossi, AM; Moullec, G; Lavoie, KL; Gour-Provencal, G; Bacon, SL
Canadian Journal of Cardiology, 29(5): 622-627.
10.1016/j.cjca.2013.02.010
CrossRef
International Journal of Sports Medicine
Low-Intensity Resistance Training after High-Intensity Resistance Training can Prevent the Increase of Central Arterial Stiffness
Okamoto, T; Masuhara, M; Ikuta, K
International Journal of Sports Medicine, 34(5): 385-390.
10.1055/s-0032-1312604
CrossRef
International Journal of Sports Medicine
Acute Effects of Resistance Exercise on 24-h Blood Pressure in Middle Aged Overweight and Obese Women
Tibana, RA; Pereira, GB; Navalta, JW; Bottaro, M; Prestes, J
International Journal of Sports Medicine, 34(5): 460-464.
10.1055/s-0032-1323819
CrossRef
European Respiratory Journal
Physical activity in COPD patients: patterns and bouts
Donaire-Gonzalez, D; Gimeno-Santos, E; Balcells, E; Rodriguez, DA; Farrero, E; de Batlle, J; Benet, M; Ferrer, A; Barbera, JA; Gea, J; Rodriguez-Roisin, R; Anto, JM; Garcia-Aymerich, J
European Respiratory Journal, 42(4): 993-1002.
10.1183/09031936.00101512
CrossRef
American Journal of Hypertension
Exercise Training Reduces Peripheral Arterial Stiffness and Myocardial Oxygen Demand in Young Prehypertensive Subjects
Beck, DT; Martin, JS; Casey, DP; Braith, RW
American Journal of Hypertension, 26(9): 1093-1102.
10.1093/ajh/hpt080
CrossRef
Journal of Sports Sciences
Does self-reported physical activity associate with high blood pressure in adolescents when adiposity is adjusted for?
Barros, MVG; Ritti-Dias, RM; Barros, SSH; Mota, J; Andersen, LB
Journal of Sports Sciences, 31(4): 387-395.
10.1080/02640414.2012.734631
CrossRef
Motriz-Revista De Educacao Fisica
Rating of perceived exertion, affective response and post-exercise hypotension in Tai Chi Chuan session
Chao, CHN; Okano, AH; Savir, PAH; Alves, EA; Elsangedy, HM; Cyrino, ES; de Farias, LF; Costa, EC
Motriz-Revista De Educacao Fisica, 19(1): 133-140.

Netherlands Heart Journal
Neurocardiological differences between musicians and control subjects
Burggraaf, JLI; Elffers, TW; Segeth, FM; Austie, FMC; Plug, MB; Gademan, MGJ; Maan, AC; Man, S; de Muynck, M; Soekkha, T; Simonsz, A; van der Wall, EE; Schalij, MJ; Swenne, CA
Netherlands Heart Journal, 21(4): 183-188.
10.1007/s12471-012-0372-9
CrossRef
Metabolism-Clinical and Experimental
Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men
Whyte, LJ; Ferguson, C; Wilson, J; Scott, RA; Gill, JMR
Metabolism-Clinical and Experimental, 62(2): 212-219.
10.1016/j.metabol.2012.07.019
CrossRef
Advances in Physiology Education
Rationale and resources for teaching the mathematical modeling of athletic training and performance
Clarke, DC; Skiba, PF
Advances in Physiology Education, 37(2): 134-152.
10.1152/advan.00078.2011
CrossRef
Pm&R
Principles of Exercise Physiology: Responses to Acute Exercise and Long-term Adaptations to Training
Rivera-Brown, AM; Frontera, WR
Pm&R, 4(): 797-804.
10.1016/j.pmrj.2012.10.007
CrossRef
Italian Journal of Pediatrics
Focus on prevention, diagnosis and treatment of hypertension in children and adolescents
Spagnolo, A; Giussani, M; Ambruzzi, AM; Bianchetti, M; Maringhini, S; Matteucci, MC; Menghetti, E; Salice, P; Simionato, L; Strambi, M; Virdis, R; Genovesi, S
Italian Journal of Pediatrics, 39(): -.
ARTN 20
CrossRef
Pm&R
Exercise in Cardiovascular Diseases
Perez-Terzic, CM
Pm&R, 4(): 867-873.
10.1016/j.pmrj.2012.10.003
CrossRef
European Journal of Applied Physiology
Effects of isometric handgrip training dose on resting blood pressure and resistance vessel endothelial function in normotensive women
Badrov, MB; Bartol, CL; DiBartolomeo, MA; Millar, PJ; McNevin, NH; McGowan, CL
European Journal of Applied Physiology, 113(8): 2091-2100.
10.1007/s00421-013-2644-5
CrossRef
Clinical Physiology and Functional Imaging
Women with metabolic syndrome present different autonomic modulation and blood pressure response to an acute resistance exercise session compared with women without metabolic syndrome
Tibana, RA; Boullosa, DA; Leicht, AS; Prestes, J
Clinical Physiology and Functional Imaging, 33(5): 364-372.
10.1111/cpf.12038
CrossRef
Journal of Molecular and Cellular Cardiology
The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining
Carneiro, MA; Quintao, JF; Drummond, LR; Lavorato, VN; Drummond, FR; da Cunha, DNQ; Amadeu, MA; Felix, LB; de Oliveira, EM; Cruz, JS; Primola-Gomes, TN; Mill, JG; Natali, AJ
Journal of Molecular and Cellular Cardiology, 57(): 119-128.
10.1016/j.yjmcc.2013.01.013
CrossRef
4Th World Conference on Educational Sciences (Wces-2012)
The effect of resistance training on some pulmonary indexes, body composition, body fat distribution and VO2max in thin and fat men of personal and members of faculty of Azad university Bebahan branch
Askarabadi, SH; Valizadeh, R
4Th World Conference on Educational Sciences (Wces-2012), 46(): 3051-3055.
10.1016/j.sbspro.2012.06.008
CrossRef
Hypertension
Beyond Medications and Diet: Alternative Approaches to Lowering Blood Pressure A Scientific Statement From the American Heart Association
Brook, RD; Appel, LJ; Rubenfire, M; Ogedegbe, G; Bisognano, JD; Elliott, WJ; Fuchs, FD; Hughes, JW; Lackland, DT; Staffileno, BA; Townsend, RR; Rajagopalan, S
Hypertension, 61(6): 1360-+.
10.1161/HYP.0b013e318293645f
CrossRef
Bmc Public Health
Occupational and leisure time physical activity in contrasting relation to ambulatory blood pressure
Clays, E; De Bacquer, D; Van Herck, K; De Backer, G; Kittel, F; Holtermann, A
Bmc Public Health, 12(): -.
ARTN 1002
CrossRef
Kinesiology
Effect of Concurrent Exercise on Post-Exercise Hypotension in Borderline Hypertensive Women: Influence of Exercise Intensity
Faraji, H; Nikookheslat, SD
Kinesiology, 44(2): 166-172.

Revista Brasileira De Medicina DO Esporte
A Comparative Study of Cardiovascular Responses to Two Rest Intervals Between Circuit Resistance Exercises in Normotensive Women
Arazi, H; Ghiasi, A; Asgharpoor, S
Revista Brasileira De Medicina DO Esporte, 19(3): 176-180.

Clinical Interventions in Aging
Isometric handgrip does not elicit cardiovascular overload or post-exercise hypotension in hypertensive older women
Olher, RDV; Bocalini, DS; Bacurau, RF; Rodriguez, D; Figueira, A; Pontes, FL; Navarro, F; Simoes, HG; Araujo, RC; Moraes, MR
Clinical Interventions in Aging, 8(): 649-655.
10.2147/CIA.S40560
CrossRef
Applied Psychology-Health and Well Being
Self-Reported Quality of Life Before and After Aerobic Exercise Training in Individuals with Hypertension: A Randomised-Controlled Trial
Maruf, FA; Akinpelu, AO; Salako, BL
Applied Psychology-Health and Well Being, 5(2): 209-224.
10.1111/aphw.12005
CrossRef
Experimental Physiology
Peripheral chemoreceptors mediate training-induced plasticity in paraventricular nucleus pre-autonomic oxytocinergic neurons
Cruz, JC; Cavalleri, MT; Ceroni, A; Michelini, LC
Experimental Physiology, 98(2): 386-396.
10.1113/expphysiol.2012.065888
CrossRef
Scandinavian Journal of Medicine & Science in Sports
Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients
Millar, PJ; Levy, AS; McGowan, CL; McCartney, N; MacDonald, MJ
Scandinavian Journal of Medicine & Science in Sports, 23(5): 620-626.
10.1111/j.1600-0838.2011.01435.x
CrossRef
Atherosclerosis
The effect of exercise training on ankle-brachial index in type 2 diabetes
Gibbs, BB; Dobrosielski, DA; Althouse, AD; Stewart, KJ
Atherosclerosis, 230(1): 125-130.
10.1016/j.atherosclerosis.2013.07.002
CrossRef
Brazilian Journal of Medical and Biological Research
Genetic and environmental influences on blood pressure and physical activity: a study of nuclear families from Muzambinho, Brazil
Forjaz, CLM; Bartholomeu, T; Rezende, JAS; Oliveira, JA; Basso, L; Tani, G; Prista, A; Maia, JAR
Brazilian Journal of Medical and Biological Research, 45(): 1269-1275.
10.1590/S0100-879X2012007500141
CrossRef
Journal of Applied Physiology
H-2-receptor-mediated vasodilation contributes to postexercise hypotension
McCord, JL; Beasley, JM; Halliwill, JR
Journal of Applied Physiology, 100(1): 67-75.
10.1152/japplphysiol.00959.2005
CrossRef
Ethnicity & Disease
Walking, body composition, and blood pressure dose-response in African American and White women
Brandon, LJ; Elliott-Lloyd, MB
Ethnicity & Disease, 16(3): 675-681.

Herz
Exercise in arterial hypertension
Predel, HG; Schramm, T
Herz, 31(6): 525-530.
10.1007/s00059-006-2889-4
CrossRef
Clinical and Experimental Pharmacology and Physiology
Exercise training and sympathetic nervous system activity: Evidence for physical activity dependent neural plasticity
Mueller, PJ
Clinical and Experimental Pharmacology and Physiology, 34(4): 377-384.
10.1111/j.1440-1681.2007.04590.x
CrossRef
Hypertension
Physical activity and blood pressure in childhood - Findings from a population-based study
Leary, SD; Ness, AR; Smith, GD; Mattocks, C; Deere, K; Blair, SN; Riddoch, C
Hypertension, 51(1): 92-98.
10.1161/HYPERTENSIONAHA.107.099051
CrossRef
Clinics
Preventing tomorrow's sudden cardiac death in epilepsy today: What should physicians know about this?
Scorza, FA; Colugnati, DB; Pansani, AP; Sonoda, EYE; Arida, RM; Cavalheiro, EA
Clinics, 63(3): 389-394.
10.1590/S1807-59322008000300017
CrossRef
European Heart Journal
2007 Guidelines for the management of arterial hypertension - The task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European society of cardiology (ESC)
Mancia, G; De Backer, G; Dominiczak, A; Cifkova, R; Fagard, R; Germano, G; Grassi, G; Heagerty, AM; Kjeldsen, SE; Laurent, S; Narkiewicz, K; Ruilope, L; Rynkiewicz, A; Schmieder, RE; Struijker Boudier, HAJ; Zanchetti, A
European Heart Journal, 28(): 1462-1536.
10.1093/eurheartj/ehm236
CrossRef
Journal of Applied Physiology
Enhancement of fat metabolism by repeated bouts of moderate endurance exercise
Goto, K; Ishii, N; Mizuno, A; Takamatsu, K
Journal of Applied Physiology, 102(6): 2158-2164.
10.1152/japplphysiol.01302.2006
CrossRef
Journal of Human Hypertension
Accumulation of 30 min of moderately intense physical activity is a clinically meaningful treatment to reduce systolic blood pressure in prehypertension
von Kanel, R
Journal of Human Hypertension, 22(7): 444-446.
10.1038/jhh.2008.30
CrossRef
American Journal of Physiology-Heart and Circulatory Physiology
Low-dose estrogen therapy does not change postexercise hypotension, sympathetic nerve activity reduction, and vasodilation in healthy postmenopausal women
Oneda, B; Forjaz, CLM; Bernardo, FR; Araujo, TG; Gusmao, JL; Labes, E; Abrahao, SB; Mion, D; Fonseca, AM; Tinucci, T
American Journal of Physiology-Heart and Circulatory Physiology, 295(4): H1802-H1808.
10.1152/ajpheart.01222.2007
CrossRef
Journal of Human Hypertension
Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability
Cornelissen, VA; Verheyden, B; Aubert, AE; Fagard, RH
Journal of Human Hypertension, 24(3): 175-182.
10.1038/jhh.2009.51
CrossRef
International Journal of Cardiology
Correction of the hypertensive response in the treadmill testing by the work performance improves the prediction of hypertension by ambulatory blood pressure monitoring and incidence of cardiac abnormalities by echocardiography: Results of an eight year follow-up study
Zanettini, JO; Zanettini, JP; Zanettini, MT; Fuchs, FD
International Journal of Cardiology, 141(3): 243-249.
10.1016/j.ijcard.2008.11.208
CrossRef
Science & Sports
Blood pressure and resistance training
Chanudet, X; Louembe, J; de Cremeur, GL; Bonnevie, L
Science & Sports, 20(): 256-260.
10.1016/j.scispo.2005.08.006
CrossRef
European Journal of Applied Physiology
Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives
McGowan, CL; Visocchi, A; Faulkner, M; Verduyn, R; Rakobowchuk, M; Levy, AS; McCartney, N; MacDonald, MJ
European Journal of Applied Physiology, 98(4): 355-362.
10.1007/s00421-006-0282-x
CrossRef
British Journal of Sports Medicine
Coronary risk in a cohort of Paralympic athletes
Filho, JAO; Salvetti, XM; de Mello, MT; da Silva, AC; Filho, BL
British Journal of Sports Medicine, 40(): 918-922.
10.1136/bjsm.2006.029421
CrossRef
Nutrition & Metabolism
Dietary calcium intake and Renin Angiotensin System polymorphisms alter the blood pressure response to aerobic exercise: a randomized control design
Pescatello, LS; Turner, D; Rodriguez, N; Blanchard, BE; Tsongalis, GJ; Maresh, CM; Duffy, V; D Thompson, P
Nutrition & Metabolism, 4(): -.
ARTN 1
CrossRef
Canadian Journal of Cardiology
Impact of diabetes, chronic heart failure, congenital heart disease and chronic obstructive pulmonary disease on acute and chronic exercise responses
Brassard, P; Ferland, A; Marquis, K; Maltais, F; Jobin, J; Poirier, P
Canadian Journal of Cardiology, 23(): 89B-96B.

Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
Evidence-informed physical activity guidelines fair Canadian adults
Warburton, DER; Katzmarzyk, PT; Rhodes, RE; Shephard, RJ
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 32(): S16-S68.
10.1139/H07-123
CrossRef
Acta Cardiologica
The role of exercise in cardiovascular rehabilitation: A review
Koutroumpi, M; Pitsavos, C; Stefanadis, C
Acta Cardiologica, 63(1): 73-79.
10.2143/AC.63.1.2025335
CrossRef
Journal of Rehabilitation Research and Development
Task-oriented treadmill exercise training in chronic hemiparetic stroke
Ivey, FM; Hafer-Macko, CE; Macko, RF
Journal of Rehabilitation Research and Development, 45(2): 249-259.
10.1682/JRRD.2007.02.0035
CrossRef
American Journal of Hypertension
Prior Exercise Lowers Blood Pressure During Simulated Night-Work With Different Meal Schedules
Fullick, S; Morris, C; Jones, H; Atkinson, G
American Journal of Hypertension, 22(8): 835-841.
10.1038/ajh.2009.91
CrossRef
Journal of Exercise Science & Fitness
Timing of Exercise Within the Waking Period Does Not Alter Blood Pressure During Subsequent Nocturnal Sleep in Normotensive Individuals
Jones, H; George, K; Atkinson, G
Journal of Exercise Science & Fitness, 7(2): S42-S50.

Best Practice & Research in Clinical Gastroenterology
The role of exercise for weight loss and maintenance
Donnelly, JE; Smith, B; Jacobsen, DJ; Kirk, E; DuBose, K; Hyder, M; Bailey, B; Washburn, R
Best Practice & Research in Clinical Gastroenterology, 18(6): 1009-1029.
10.1016/j.bpg.2004.06.022
CrossRef
Journal of Applied Physiology
Dose-response relationship of endurance training for autonomic circulatory control in healthy seniors
Okazaki, K; Iwasaki, K; Prasad, A; Palmer, MD; Martini, ER; Fu, Q; Arbab-Zadeh, A; Zhang, R; Levine, BD
Journal of Applied Physiology, 99(3): 1041-1049.
10.1152/japplphysiol.00085.2005
CrossRef
Medical Journal of Australia
Physical activity for people with cardiovascular disease: recommendations of the National Heart Foundation of Australia
Briffa, TG; Maiorana, A; Sheerin, NJ; Stubbs, AG; Oldenburg, BF; Sammel, NL; Allan, RM
Medical Journal of Australia, 184(2): 71-+.

Clinical Science
Isometric handgrip training does not improve flow-mediated dilation in subjects with normal blood pressure
McGowan, CL; Levy, AS; McCartney, N; MacDonald, MJ
Clinical Science, 112(): 403-409.
10.1042/CS20060195
CrossRef
Climacteric
Diet and lifestyle in managing postmenopausal obesity
Dubnov-Raz, G; Pines, A; Berry, EM
Climacteric, 10(): 38-41.
10.1080/13697130701586428
CrossRef
Journal of Aging and Physical Activity
Environmental changes to increase physical activity: Perceptions of older urban ethnic-minority women
Lees, E; Taylor, WC; Hepworth, JT; Feliz, K; Cassells, A; Tobin, JN
Journal of Aging and Physical Activity, 15(4): 425-438.

International Sportmed Journal
Effect of high-versus low-intensity resistance training on post-exercise hypotension in male athletes
Boroujerdi, SS; Rahimi, R; Noori, SR
International Sportmed Journal, 10(2): 95-100.

Cardiovascular Journal of Africa
Gender differences in metabolic risk factor prevalence in a South African student population
Smith, C; Essop, MF
Cardiovascular Journal of Africa, 20(3): 178-182.

British Journal of Sports Medicine
Impact of mode of transportation on dyslipidaemia in working people in Beijing
Guo, X; Jia, Z; Zhang, P; Yang, S; Wu, W; Sang, L; Luo, Y; Lu, X; Dai, H; Zeng, Z; Wang, W
British Journal of Sports Medicine, 43(): 928-931.
10.1136/bjsm.2008.049171
CrossRef
Scandinavian Journal of Medicine & Science in Sports
Effects of a 12-week intervention period with football and running for habitually active men with mild hypertension
Knoepfli-Lenzin, C; Sennhauser, C; Toigo, M; Boutellier, U; Bangsbo, J; Krustrup, P; Junge, A; Dvorak, J
Scandinavian Journal of Medicine & Science in Sports, 20(): 72-79.
10.1111/j.1600-0838.2009.01089.x
CrossRef
Clinics
Intra-Arterial Blood Pressure Response in Hypertensive Subjects During Low- and High-Intensity Resistance Exercise
Nery, SD; Gomides, RS; da Silva, GV; Forjaz, CLD; Mion, D; Tinucci, T
Clinics, 65(3): 271-277.
10.1590/S1807-59322010000300006
CrossRef
Journal of Hypertension
Exercise intensity and postexercise hypotension
Cornelissen, VA; Fagard, RH
Journal of Hypertension, 22(): 1859-1861.

Clinical and Experimental Pharmacology and Physiology
Post-resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide
Lizardo, JHF; Silveira, EAA; Vassallo, DV; Oliveira, EM
Clinical and Experimental Pharmacology and Physiology, 35(7): 782-787.
10.1111/j.1440-1681.2008.04950.x
CrossRef
Epilepsy & Behavior
Preventive measures for sudden cardiac death in epilepsy beyond therapies
Scorza, FA; Arida, RM; Cavalheiro, EA
Epilepsy & Behavior, 13(1): 263-264.
10.1016/j.yebeh.2007.12.014
CrossRef
European Journal of Applied Physiology
The acute post-exercise response of blood pressure varies with time of day
Jones, H; Pritchard, C; George, K; Edwards, B; Atkinson, G
European Journal of Applied Physiology, 104(3): 481-489.
10.1007/s00421-008-0797-4
CrossRef
Chronobiology International
Post-Exercise Blood Pressure Reduction Is Greater Following Intermittent Than Continuous Exercise and Is Influenced Less by Diurnal Variation
Jones, H; Taylor, CE; Lewis, NCS; George, K; Atkinson, G
Chronobiology International, 26(2): 293-306.
10.1080/07420520902739717
CrossRef
Angiology
Sport Therapy for Hypertension: Why, How, and How Much?
Manfredini, F; Malagoni, AM; Mandini, S; Boari, B; Felisatti, M; Zamboni, P; Manfredini, R
Angiology, 60(2): 207-216.
10.1177/0003319708316012
CrossRef
Experimental Physiology
Chronic absence of baroreceptor inputs prevents training-induced cardiovascular adjustments in normotensive and spontaneously hypertensive rats
Ceroni, A; Chaar, LJ; Bombein, RL; Michelini, LC
Experimental Physiology, 94(6): 630-640.
10.1113/expphysiol.2008.046128
CrossRef
American Journal of Epidemiology
Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women
Barlow, CE; LaMonte, MJ; FitzGerald, SJ; Kampert, JB; Perrin, JL; Blair, SN
American Journal of Epidemiology, 163(2): 142-150.
10.1093/aje/kwj019
CrossRef
Archives Des Maladies Du Coeur Et Des Vaisseaux
Value and limitations of sport in cardiac patients
Vona, M
Archives Des Maladies Du Coeur Et Des Vaisseaux, 99(): 1130-1135.

Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
Physical activity in prevention and treatment of the metabolic syndrome
Lakka, TA; Laaksonen, DE
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 32(1): 76-88.
10.1139/H06-113
CrossRef
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
The health benefits of interactive video game exercise
Warburton, DER; Bredin, SSD; Horita, LTL; Zbogar, D; Scott, JM; Esch, BTA; Rhodes, RE
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 32(4): 655-663.
10.1139/H07-038
CrossRef
Blood Pressure
2007 ESH-ESC guidelines for the management of arterial hypertension - The task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European society of cardiology (ESC)
Mancia, G; De Backer, G; Dominiczak, A; Fagard, R; Germano, G; Grassi, G; Heagerty, AM; Kjeldsen, SE; Laurent, S; Narkiewicz, K; Ruilope, L; Rynkiewicz, A; Schmieder, RE; Boudier, HAJS; Zanchetti, A; Vahanian, A; Camm, J; De Caterina, R; Dean, V; Dickstein, K; Filippatos, G; Funck-Brentano, C; Hellemans, I; Kristensen, SD; McGregor, K; Sechtem, U; Silber, S; Tendera, M; Widimsky, P; Zamorano, JL; Kjeldsen, SE; Erdine, S; Narkiewicz, K; Kiowski, W; Agabiti-Rosei, E; Ambrosioni, E; Cifkova, R; Dominiczak, A; Fagard, R; Heagerty, AM; Laurent, S; Lindholm, LH; Mancia, G; Manolis, A; Nilsson, PM; Redon, J; Schmieder, RE; Struijker-Boudier, HAJ; Viigimaa, M; Filippatos, G; Adamopoulos, S; Agabiti-Rosei, E; Ambrosioni, E; Bertomeu, V; Clement, D; Erdine, S; Farsang, C; Gaita, D; Kiowski, W; Lip, G; Mallion, JM; Manolis, AJ; Nilsson, PM; O'Brien, E; Ponikowski, P; Redon, J; Rodicio, J; Ruschitzka, F; Tamargo, J; Van Zwieten, P; Viigimaa, M; Waeber, B; Williams, B; Zamorano, JL
Blood Pressure, 16(3): 135-232.
10.1080/08037050701461084
CrossRef
Journal of Internal Medicine
The effect of baseline physical activity on cardiovascular outcomes and new-onset diabetes in patients treated for hypertension and left ventricular hypertrophy: the LIFE study
Fossum, E; Gleim, GW; Kjeldsen, SE; Kizer, JR; Julius, S; Devereux, RB; Brady, WE; Hille, DA; Lyle, PA; Dahlof, B
Journal of Internal Medicine, 262(4): 439-448.
10.1111/j.1365-2796.2007.01808.x
CrossRef
Experimental Biology and Medicine
Progressive resistance training without volume increases does not alter arterial stiffness and aortic wave reflection
Casey, DP; Beck, DT; Braith, RW
Experimental Biology and Medicine, 232(9): 1228-1235.
10.3181/0703-RM-65
CrossRef
Preventive Medicine
Maintaining physical activity among older adults: Six-month outcomes of the Keep Active Minnesota randomized controlled trial
Martinson, BC; Crain, AL; Sherwood, NE; Hayes, M; Pronk, NP; O'Connor, PJ
Preventive Medicine, 46(2): 111-119.
10.1016/j.ypmed.2007.08.007
CrossRef
Revista Brasileira De Medicina DO Esporte
Influence of Resistance Exercises Order Performance on Post-exercise Hypotension in Hypertensive Elderly
Jannig, PR; Cardoso, AC; Fleischmann, E; Coelho, CW; de Carvalho, T
Revista Brasileira De Medicina DO Esporte, 15(5): 338-341.

Alcoholism-Clinical and Experimental Research
Exercise Neuroprotection in a Rat Model of Binge Alcohol Consumption
Leasure, JL; Nixon, K
Alcoholism-Clinical and Experimental Research, 34(3): 404-414.
10.1111/j.1530-0277.2009.01105.x
CrossRef
Revista Brasileira De Medicina DO Esporte
Body Compostion Alterations Resulting From Weight Training in Subjects With Down Syndrome
Neto, JF; de Pontes, LM; Fernandes, J
Revista Brasileira De Medicina DO Esporte, 16(1): 9-12.

American Journal of Physiology-Regulatory Integrative and Comparative Physiology
Physical (in)activity-dependent alterations at the rostral ventrolateral medulla: influence on sympathetic nervous system regulation
Mueller, PJ
American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 298(6): R1468-R1474.
10.1152/ajpregu.00101.2010
CrossRef
Physical Therapy
Similarity of joint Kinematics and Muscle Demands Between Elliptical Training and Walking: Implications for Practice
Burnfield, JM; Shu, Y; Buster, T; Taylor, A
Physical Therapy, 90(2): 289-305.
10.2522/ptj.20090033
CrossRef
Experimental Physiology
Aerobic exercise acutely improves insulin- and insulin-like growth factor-1-mediated vasorelaxation in hypertensive rats
Yang, AL; Yeh, CK; Su, CT; Lo, CW; Lin, KL; Lee, SD
Experimental Physiology, 95(5): 622-629.
10.1113/expphysiol.2009.050146
CrossRef
Arquivos Brasileiros De Cardiologia
Effects of Rest Interval between Exercise Sets on Blood Pressure after Resistance Exercises
Veloso, J; Polito, MD; Riera, T; Celes, R; Vidal, JC; Bottaro, M
Arquivos Brasileiros De Cardiologia, 94(4): 512-518.

Sports Medicine
The anti-hypertensive effects of exercise - Integrating acute and chronic mechanisms
Hamer, M
Sports Medicine, 36(2): 109-116.

Circulation
Resistance exercise training - Its role in the prevention of cardiovascular disease
Braith, RW; Stewart, KJ
Circulation, 113(): 2642-2650.
10.1161/CIRCULATIONAHA.105.584060
CrossRef
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
Exercise in the prevention and treatment of maternal-fetal disease: a review of the literature
Weissgerber, TL; Wolfe, LA; Davies, GAL; Mottola, MF
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 31(6): 661-674.
10.1139/H06-060
CrossRef
Annals of Epidemiology
Amount of leisure-time physical activity and risk of nonfatal myocardial infarction
Lovasi, GS; Lemaitre, RN; Siscovick, DS; Dublin, S; Bis, JC; Lumley, T; Heckbert, SR; Smith, NL; Psaty, BM
Annals of Epidemiology, 17(6): 410-416.
10.1016/j.annepidem.2006.10.012
CrossRef
American Journal of Sports Medicine
Return to sports and recreational activity after unicompartmental knee arthroplasty
Naal, FD; Fischer, M; Preuss, A; Goldhahn, J; von Knoch, F; Preiss, S; Munzinger, U; Drobny, T
American Journal of Sports Medicine, 35(): 1688-1695.
10.1177/0363546507303562
CrossRef
European Journal of Applied Physiology
Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done?
Jones, H; George, K; Edwards, B; Atkinson, G
European Journal of Applied Physiology, 102(1): 33-40.
10.1007/s00421-007-0562-0
CrossRef
International Immunopharmacology
Kallikrein kinin system activation in post-exercise hypotension in water running of hypertensive volunteers
Pontes, FL; Bacurau, RFP; Moraes, MR; Navarro, F; Casarini, DE; Pesquero, JL; Pesquero, JB; Araujo, RC; Picarro, IC
International Immunopharmacology, 8(2): 261-266.
10.1016/j.intimp.2007.09.001
CrossRef
American Journal of Physiology-Regulatory Integrative and Comparative Physiology
Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin
Mueller, PJ
American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 295(3): R727-R732.
10.1152/ajpregu.00144.2008
CrossRef
Anais Da Academia Brasileira De Ciencias
The pilocarpine model of epilepsy: what have we learned?
Scorza, FA; Arida, RM; Naffah-Mazzacoratti, MD; Scerni, DA; Calderazzo, L; Cavalheiro, EA
Anais Da Academia Brasileira De Ciencias, 81(3): 345-365.

Archives of Internal Medicine
Effect of exercise on blood pressure in older persons - A randomized controlled trial
Stewart, KJ; Bacher, A; Turner, KL; Fleg, JL; Hees, PS; Shapiro, EP; Tayback, M; Ouyang, P
Archives of Internal Medicine, 165(7): 756-762.

Brain Research
Cardiovascular effects of angiotensin II and angiotensin-(1-7) at the RVLM of trained normotensive rats
Becker, LK; Santos, RAS; Campagnole-Santos, MJ
Brain Research, 1040(): 121-128.
10.1016/j.brainres.2005.01.085
CrossRef
Current Hypertension Reports
Exercise and hypertension: Recent advances in exercise prescription
Pescatello, LS
Current Hypertension Reports, 7(4): 281-286.

European Journal of Applied Physiology
Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity
Rezk, CC; Marrache, RCB; Tinucci, T; Mion, D; Forjaz, CLM
European Journal of Applied Physiology, 98(1): 105-112.
10.1007/s00421-006-0257-y
CrossRef
American Journal of Health Promotion
Metabolic syndrome and worksite health promotion
Leutzinger, J; Pirner, M; Landschulz, W; Nevins, RL; Sullivan, S; Silberman, C
American Journal of Health Promotion, 21(1): A1-A11.

Canadian Journal of Cardiology
Universal access: But when? Treating the right patient at the right time: Access to cardiac rehabilitation
Dafoe, W; Arthur, H; Stokes, H; Morrin, L; Beaton, L
Canadian Journal of Cardiology, 22(): 905-911.

Bmc Public Health
Changes in physical health among participants in a multidisciplinary health programme for long-term unemployed persons
Schutgens, CAE; Schuring, M; Voorham, TAJ; Burdorf, A
Bmc Public Health, 9(): -.
ARTN 197
CrossRef
Pediatric Nephrology
Treatment of hypertension in children and adolescents
Lande, MB; Flynn, JT
Pediatric Nephrology, 24(): 1939-1949.
10.1007/s00467-007-0573-4
CrossRef
Brazilian Journal of Pharmaceutical Sciences
The effect of physical exercise and caloric restriction on the components of metabolic syndrome
Torres-Leal, FL; de Capitani, MD; Tirapegui, J
Brazilian Journal of Pharmaceutical Sciences, 45(3): 379-399.

Arquivos Brasileiros De Cardiologia
Lack of Influence of Body Mass on Blood Pressure Reduction after Exercising
Bundchen, DC; Panigas, CF; Dipp, T; Panigas, TF; Richter, CM; Belli, KC; Viecili, PRN
Arquivos Brasileiros De Cardiologia, 94(5): 678-683.

Ethnicity & Disease
Increasing physical activity in the deconditioned person: The role of resistance training
Fahlman, MM; Topp, R
Ethnicity & Disease, 14(4): S5-S7.

Circulation
Cardiac rehabilitation and secondary prevention of coronary heart disease - An American Heart Association Scientific Statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), in collaboration with the American Association of Cardiovascular and Pulmonary Rehabilitation
Leon, AS; Franklin, BA; Costa, F; Balady, GJ; Berra, KA; Stewart, KJ; Thompson, PD; Williams, MA; Lauer, MS
Circulation, 111(3): 369-376.
10.1161/01.CIR.0000151788.08740.5C
CrossRef
European Journal of Cardiovascular Prevention & Rehabilitation
European guidelines on cardiovascular disease prevention in clinical practice: Full text
Graham, I; Atar, D; Borch-Johnsen, K; Boysen, G; Burell, G; Cifkova, R; Dallongeville, J; De Backer, G; Ebrahim, S; Gjelsvik, B; Herrmann-Lingen, C; Hoes, A; Humphries, S; Knapton, M; Perk, J; Priori, SG; Pyorala, K; Reiner, Z; Ruilope, L; Sans-Menendez, S; Reimer, WSO; Weissbergh, P; Wood, D; Yarnell, J; Zamorano, JL
European Journal of Cardiovascular Prevention & Rehabilitation, 14(): S1-S113.

Nephrology Dialysis Transplantation
Predictors of new-onset decline in kidney function in a general middle-european population
Obermayr, RP; Temml, C; Knechtelsdorfer, M; Gutjahr, G; Kletzmayr, J; Heiss, S; Ponholzer, A; Madersbacher, S; Oberbauer, R; Klauser-Braun, R
Nephrology Dialysis Transplantation, 23(4): 1265-1273.
10.1093/ndt/gfm790
CrossRef
Neuroscience and Biobehavioral Reviews
Individual responses to aerobic exercise: The role of the autonomic nervous system
Hautala, AJ; Kiviniemi, AM; Tulppo, MP
Neuroscience and Biobehavioral Reviews, 33(2): 107-115.
10.1016/j.neubiorev.2008.04.009
CrossRef
Hellenic Journal of Cardiology
Physical Activity in the Prevention and Management of High Blood Pressure
Kokkinos, PF; Giannelou, A; Manolis, A; Pittaras, A
Hellenic Journal of Cardiology, 50(1): 52-59.

Clinical Science
Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome
Wray, DW; Uberoi, A; Lawrenson, L; Bailey, DM; Richardson, RS
Clinical Science, 116(): 433-441.
10.1042/CS20080337
CrossRef
Revista Brasileira De Medicina DO Esporte
Post-exercise Pressoric Responses of Exercises Performed at Different Loads by Normotensive Women
Gurjao, ALD; Salvador, EP; Cyrino, ES; Gerage, AM; Schiavoni, D; Gobbi, S
Revista Brasileira De Medicina DO Esporte, 15(1): 14-18.

Preventive Medicine
Maintaining physical activity among older adults: 24-month outcomes of the Keep Active Minnesota randomized controlled trial
Martinson, BC; Sherwood, NE; Crain, AL; Hayes, MG; King, AC; Pronk, NP; O'Connor, PJ
Preventive Medicine, 51(1): 37-44.
10.1016/j.ypmed.2010.04.002
CrossRef
Journal of Applied Physiology
Neuroplastic adaptations to exercise: neuronal remodeling in cardiorespiratory and locomotor areas
Nelson, AJ; Juraska, JM; Musch, TI; Iwamoto, GA
Journal of Applied Physiology, 99(6): 2312-2322.
10.1152/japplphysiol.00693.2005
CrossRef
Medicina Dello Sport
Recommendations for competitive sports participation in athletes with cardiovascular disease
Pelliccia, A; Fagard, R; Bjornstad, HH; Anastassakis, A; Arbustini, E; Assanelli, D; Biffi, A; Borjesson, M; Carre, F; Corrado, D; Delise, P; Dorwarth, U; Hirth, A; Heidbuchel, H; Hoffmann, E; Mellwig, KP; Panhuyzen-Goedkoop, N; Pisani, A; Solberg, EE; Van-Buuren, F; Vanhees, L; Blomstrom-Lundqvist, C; Deligiannis, A; Dugmore, D; Glikson, M; Hoff, PI; Hoffmann, A; Horstkotte, D; Nordrehaug, JE; Oudhof, J; Mckenna, WJ; Penco, M; Prior, S; Reybrouck, T; Senden, PJF; Spataro, A; Thiene, G
Medicina Dello Sport, 58(3): 157-191.

American Journal of Epidemiology
Physical activity, insulin sensitivity, and hypertension among US adults: Findings from the insulin resistance atherosclerosis study
Foy, CG; Foley, KL; D'Agostino, RB; Goff, DC; Mayer-Davis, E; Wagenknecht, LE
American Journal of Epidemiology, 163(): 921-928.
10.1093/aje/kwj113
CrossRef
Ethnicity & Disease
Exercise for the inactive hypertensive patient
Topp, R; Frost, KL
Ethnicity & Disease, 16(3): S27-S34.

Journal of Human Hypertension
Beta-blockers do not impair the cardiovascular benefits of endurance training in hypertensives
Westhoff, TH; Franke, N; Schmidt, S; Vallbracht-Israng, K; Zidek, W; Dimeo, F; van der Giet, M
Journal of Human Hypertension, 21(6): 486-493.
10.1038/sj.jhh.1002173
CrossRef
Journal of Human Hypertension
Accumulation of physical activity: blood pressure reduction between 10-min walking sessions
Park, S; Rink, LD; Wallace, JP
Journal of Human Hypertension, 22(7): 475-482.
10.1038/jhh.2008.29
CrossRef
Journal of Human Hypertension
Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives
Collier, SR; Kanaley, JA; Carhart, R; Frechette, V; Tobin, MM; Hall, AK; Luckenbaugh, AN; Fernhall, B
Journal of Human Hypertension, 22(): 678-686.
10.1038/jhh.2008.36
CrossRef
Clinical and Experimental Hypertension
Regular Exercise Produced Cardioprotective Effects on Rat's Heart with Hypertension Induced by L-NAME Administration
Lee, J; Cho, HS; Park, S; Kim, WK
Clinical and Experimental Hypertension, 31(4): 364-375.
10.1080/10641960902977924
CrossRef
Experimental Biology and Medicine
Aortic Pulse Wave Analysis Is Not a Surrogate for Central Arterial Pulse Wave Velocity
Gurovich, AN; Beck, DT; Braith, RW
Experimental Biology and Medicine, 234(): 1339-1344.
10.3181/0902-RM-88
CrossRef
Arquivos Brasileiros De Oftalmologia
Intraocular pressure variation after submaximal strength test in resistance training
Conte, M; Scarpi, MJ; Rossin, RA; Beteli, HR; Lopes, RG; Marcos, HL
Arquivos Brasileiros De Oftalmologia, 72(3): 351-354.

Rejuvenation Research
Regression Analysis of Walking Parameters for the Age-Predictive Equation
Kikkawa, K; Okada, H; Mori, T
Rejuvenation Research, 13(): 335-338.
10.1089/rej.2009.0921
CrossRef
American Journal of Clinical Nutrition
Accumulating short bouts of brisk walking reduces postprandial plasma triacylglycerol concentrations and resting blood pressure in healthy young men
Miyashita, M; Burns, SF; Stensel, DJ
American Journal of Clinical Nutrition, 88(5): 1225-1231.
10.3945/ajcn.2008.26493
CrossRef
Sports Medicine
Resistance Training in the Treatment of the Metabolic Syndrome
Strasser, B; Siebert, U; Schobersberger, W
Sports Medicine, 40(5): 397-415.

Cardiology Clinics
Role of exercise training on cardiovascular disease in persons who have type 2 diabetes and hypertension
Stewart, KJ
Cardiology Clinics, 22(4): 569-+.
10.1016/j.ccl.2004.06.007
CrossRef
American Heart Journal
The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise
Guidry, MA; Blanchard, BE; Thompson, PD; Maresh, CM; Seip, RL; Taylor, AL; Pescatello, LS
American Heart Journal, 151(6): -.
10.1016/j.ahj.2006.03.010
CrossRef
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
Beneficial effects of isometric strength training on endothelial dysfunction in rats
Figard, H; Gaume, V; Mougin, F; Demougeot, C; Berthelot, A
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 31(5): 621-630.
10.1139/H06-070
CrossRef
European Journal of Applied Physiology
Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives
McGowan, CL; Visocchi, A; Faulkner, M; Verduyn, R; Rakobowchuk, M; Levy, AS; McCartney, N; MacDonald, MJ
European Journal of Applied Physiology, 99(3): 227-234.
10.1007/s00421-006-0337-z
CrossRef
Clinics
Acute and Chronic Effects of Aerobic and Resistance Exercise on Ambulatory Blood Pressure
Cardoso, CG; Gomides, RS; Queiroz, ACC; Pinto, LG; Lobo, FD; Tinucci, T; Mion, D; Forjaz, CLD
Clinics, 65(3): 317-325.
10.1590/S1807-59322010000300013
CrossRef
Revista Brasileira De Medicina DO Esporte
Influence of the Training Status on the Blood Pressure Behavior After a Resistance Training Session in Hypertensive Older Females
Costa, JBY; Gerage, AM; Goncalves, CGS; Pina, FLC; Polito, MD
Revista Brasileira De Medicina DO Esporte, 16(2): 103-106.

Journal of Human Hypertension
Temporal changes in the control of blood pressure in an older Australian population
Chua, B; Rochtchina, E; Mitchell, P
Journal of Human Hypertension, 19(9): 691-696.
10.1038/sj.jhh.1001881
CrossRef
Scandinavian Journal of Medicine & Science in Sports
Evidence for prescribing exercise as therapy in chronic disease
Pedersen, BK; Saltin, B
Scandinavian Journal of Medicine & Science in Sports, 16(): 3-63.

Hypertension
Exercise training restores baroreflex sensitivity in never-treated hypertensive patients
Laterza, MC; de Matos, LDNJ; Trombetta, IC; Braga, AMW; Roveda, F; Alves, MJNN; Krieger, EM; Negrao, CE; Rondon, MUPB
Hypertension, 49(6): 1298-1306.
10.1161/HYPERTENSIONAHA.106.085548
CrossRef
Journal of the American Pharmacists Association
Lifestyle modifications for patients with hypertension
Lenz, TL; Monaghan, MS
Journal of the American Pharmacists Association, 48(4): E92-E99.
10.1331/JAPhA.2008.07046
CrossRef
Journal of Physiology-London
Exercise pressor reflex function is altered in spontaneously hypertensive rats
Smith, SA; Williams, MA; Leal, AK; Mitchell, JH; Garry, MG
Journal of Physiology-London, 577(3): 1009-1020.
10.1113/jphysiol.2006.121558
CrossRef
Journal of Applied Physiology
Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla
Mueller, PJ
Journal of Applied Physiology, 102(2): 803-813.
10.1152/japplphysiol.00498.2006
CrossRef
Kidney & Blood Pressure Research
Too old to benefit from sports? The cardiovascular effects of exercise training in elderly subjects treated for isolated systolic hypertension
Westhoff, TH; Franke, N; Schmidt, S; Vallbracht-Israng, K; Meissner, R; Yildirim, H; Schlattmann, P; Zidek, W; Dimeo, F; van der Giet, M
Kidney & Blood Pressure Research, 30(4): 240-247.
10.1159/000104093
CrossRef
Cardiovascular Ultrasound
Arterial pressure changes monitoring with a new precordial noninvasive sensor
Bombardini, T; Gemignani, V; Bianchini, E; Venneri, L; Petersen, C; Pasanisi, E; Pratali, L; Pianelli, M; Faita, F; Giannoni, M; Arpesella, G; Picano, E
Cardiovascular Ultrasound, 6(): -.
ARTN 41
CrossRef
Canadian Respiratory Journal
Effects of aerobic exercise training and irbesartan on blood pressure and heart rate variability in patients with chronic obstructive pulmonary disease
Marquis, K; Maltais, F; Lacasse, Y; Licourciere, Y; Fortin, C; Poirier, P
Canadian Respiratory Journal, 15(7): 355-360.

European Journal of Cardiovascular Prevention & Rehabilitation
Risk factor management: a practice guide
Perk, J
European Journal of Cardiovascular Prevention & Rehabilitation, 16(): S24-S28.

Archives of Physical Medicine and Rehabilitation
Prevalence and etiology of delayed orthostatic hypotension in adult women
Madhavan, G; Goddard, AA; McLeod, KJ
Archives of Physical Medicine and Rehabilitation, 89(9): 1788-1794.
10.1016/j.apmr.2008.02.021
CrossRef
American Journal of Hypertension
The Association of Cardiorespiratory Fitness and Physical Activity With Incidence of Hypertension in Men
Chase, NL; Sui, XM; Lee, DC; Blair, SN
American Journal of Hypertension, 22(4): 417-424.
10.1038/ajh.2009.6
CrossRef
Revista De Saude Publica
Prevalence of arterial hypertension in young military personnel and associated factors
Wenzel, D; de Souza, JMP; de Souza, SB
Revista De Saude Publica, 43(5): 789-795.

Diabetes Research and Clinical Practice
Beneficial effect of physical activity on blood pressure and blood glucose among Japanese male workers
Ishikawa-Takata, K; Tanaka, H; Nanbu, K; Ohta, T
Diabetes Research and Clinical Practice, 87(3): 394-400.
10.1016/j.diabres.2009.06.030
CrossRef
Clinics in Geriatric Medicine
Impact of Strength and Resistance Training on Cardiovascular Disease Risk Factors and Outcomes in Older Adults
Williams, MA; Stewart, KJ
Clinics in Geriatric Medicine, 25(4): 703-+.
10.1016/j.cger.2009.07.003
CrossRef
American Journal of Physiology-Regulatory Integrative and Comparative Physiology
Putative role of the NTS in alterations in neural control of the circulation following exercise training in rats
Mueller, PJ; Hasser, EM
American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 290(2): R383-R392.
10.1152/ajpregu.00455.2005
CrossRef
Journal of Equine Veterinary Science
Effect of Competition on Nitric Oxide, Carbon Monoxide, and Cyclic Guanosine Monophosphate Levels in Training Horses
Maranon, G; Munoz-Escassi, B; Manley, W; Garcia, C; Leon, R; Olabarri, B; Cayado, P; Dominguez, C; de la Muela, MS; Suarez, M; Vara, E
Journal of Equine Veterinary Science, 29(8): 627-632.
10.1016/j.jevs.2009.07.004
CrossRef
Psychiatric Clinics of North America
Management of Schizophrenia with Obesity, Metabolic, and Endocrinological Disorders
Monteleone, P; Martiadis, V; Maj, M
Psychiatric Clinics of North America, 32(4): 775-+.
10.1016/j.psc.2009.08.003
CrossRef
Pediatric Exercise Science
ACE I/D Genotype, Habitual Physical Activity, and Blood Pressure in Children
Sarzynski, MA; Eisenmann, JC; Welk, GJ; Tucker, J; Glenn, K; Rothschild, M; Heelan, K
Pediatric Exercise Science, 22(2): 301-313.

Journal of Aging and Physical Activity
A Walking Program's Attenuation of Cardiovascular Reactivity in Older Adults With Silent Myocardial Ischemia
Neumann, SA; Brown, JRP; Waldstein, SR; Katzel, LI
Journal of Aging and Physical Activity, 14(2): 119-132.

Exercise Immunology Review
Does the aging skeletal muscle maintain its endocrine function?
Pedersen, M; Steensberg, A; Keller, C; Osada, T; Zacho, M; Saltin, B; Febbraio, MA; Pedersen, BK
Exercise Immunology Review, 10(): 42-55.

European Journal of Applied Physiology
RAAS polymorphisms alter the acute blood pressure response to aerobic exercise among men with hypertension
Blanchard, BE; Tsongalis, GJ; Guidry, MA; LaBelle, LA; Poulin, M; Taylor, AL; Maresh, CM; Devaney, J; Thompson, PD; Pescatello, LS
European Journal of Applied Physiology, 97(1): 26-33.
10.1007/s00421-006-0142-8
CrossRef
Revista Espanola De Cardiologia
Exercise as the cornerstone of cardiovascular prevention
Perez, AB
Revista Espanola De Cardiologia, 61(5): 514-528.

Acta Medica Portuguesa
Aging and blood pressure
Mendes, R; Barata, JLT
Acta Medica Portuguesa, 21(2): 193-197.

Diabetes Research and Clinical Practice
Hypotensive effects of exercise performed around anaerobic threshold in type 2 diabetic patients
Lima, LCJ; Assis, GV; Hiyane, W; Almeida, WS; Arsa, G; Baldissera, V; Campbell, CSG; Simoes, HG
Diabetes Research and Clinical Practice, 81(2): 216-222.
10.1016/j.diabres.2008.04.019
CrossRef
International Journal of Sports Medicine
Exercise Intensity and Blood Pressure During Sleep
Jones, H; George, K; Edwards, B; Atkinson, G
International Journal of Sports Medicine, 30(2): 94-99.
10.1055/s-2008-1038742
CrossRef
Obesity Reviews
Walking for prevention of cardiovascular disease in men and women: a systematic review of observational studies
Boone-Heinonen, J; Evenson, KR; Taber, DR; Gordon-Larsen, P
Obesity Reviews, 10(2): 204-217.
10.1111/j.1467-789X.2008.00533.x
CrossRef
Bmc Cardiovascular Disorders
The Metabolic Syndrome and the immediate antihypertensive effects of aerobic exercise: a randomized control design
Pescatello, LS; Blanchard, BE; Van Heest, JL; Maresh, CM; Gordish-Dressman, H; Thompson, PD
Bmc Cardiovascular Disorders, 8(): -.
ARTN 12
CrossRef
Science & Sports
Post-exercise blood pressure responses to cycle and arm-cranking
de Almeida, WS; Lima, LCD; da Cunha, RR; Simoes, HG; Nakamura, FY; Campbell, CSG
Science & Sports, 25(2): 74-80.
10.1016/j.scispo.2009.09.001
CrossRef
Journal of Hand Therapy
Screening and Evaluation of the Cardiovascular and Pulmonary Systems in Patients Presenting with Upper Extremity Impairments
Weber, MD
Journal of Hand Therapy, 23(2): 127-138.
10.1016/j.jht.2009.12.003
CrossRef
Hypertension
Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors
Cornelissen, VA; Fagard, RH
Hypertension, 46(4): 667-675.
10.1161/01.HYP.0000184225.05629.51
CrossRef
Presse Medicale
Physical activity in hypertension management
Chanudet, X; de Cremeur, GL; Bonnevie, L
Presse Medicale, 35(6): 1081-1087.

Hypertension
Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels
Rankinen, T; Church, T; Rice, T; Markward, N; Leon, AS; Rao, DC; Skinner, JS; Blair, SN; Bouchard, C
Hypertension, 50(6): 1120-1125.
10.1161/HYPERTENSIONAHA.107.093609
CrossRef
Hypertension Research
Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly
Tabara, Y; Yuasa, T; Oshiumi, A; Kobayashi, T; Miyawaki, Y; Miki, T; Kohara, K
Hypertension Research, 30(): 895-902.

Cardiology in the Young
Data from the StEP TWO programme showing the effect on blood pressure and different parameters for obesity in overweight and obese primary school children
Graf, C; Rost, SV; Koch, B; Heinen, S; Falkowski, G; Dordel, S; Bjarnason-Wehrens, B; Sreeram, N; Brockmeier, K; Christ, H; Predel, HG
Cardiology in the Young, 15(3): 291-298.

Acta Physiologica
Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension
Collier, SR; Kanaley, JA; Carhart, R; Frechette, V; Tobin, MM; Bennett, N; Luckenbaugh, AN; Fernhall, B
Acta Physiologica, 195(3): 339-348.
10.1111/j.1748-1716.2008.01897.x
CrossRef
Cardiovascular Ultrasound
Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine
Bombardini, T; Gemignani, V; Bianchini, E; Pasanisi, E; Pratali, L; Pianelli, M; Faita, F; Giannoni, M; Arpesella, G; Sicari, R; Picano, E
Cardiovascular Ultrasound, 7(): -.
ARTN 21
CrossRef
Arquivos Brasileiros De Cardiologia
Blood Pressure Measurement During Aerobic Exercise: Subsidies for Cardiac Rehabilitation
Furtado, EC; Ramos, PD; de Araujo, CGS
Arquivos Brasileiros De Cardiologia, 93(1): 45-52.

Journal of Human Hypertension
Effect of fractionized vs continuous, single-session exercise on blood pressure in adults
Angadi, SS; Weltman, A; Watson-Winfield, D; Weltman, J; Frick, K; Patrie, J; Gaesser, GA
Journal of Human Hypertension, 24(4): 300-302.
10.1038/jhh.2009.110
CrossRef
American Journal of Hypertension
Postexercise Hypotension in an Endurance-Trained Population of Men and Women Following High-Intensity Interval and Steady-State Cycling
Rossow, L; Yan, HM; Fahs, CA; Ranadive, SM; Agiovlasitis, S; Wilund, KR; Baynard, T; Fernhall, B
American Journal of Hypertension, 23(4): 358-367.
10.1038/ajh.2009.269
CrossRef
Lipids in Health and Disease
Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines
Puglisi, MJ; Vaishnav, U; Shrestha, S; Torres-Gonzalez, M; Wood, RJ; Volek, JS; Fernandez, ML
Lipids in Health and Disease, 7(): -.
ARTN 14
CrossRef
American Journal of Hypertension
Patients with type 2 diabetes have exaggerated brachial and central exercise blood pressure: Relation to left ventricular relative wall thickness
Scott, JA; Coombes, JS; Prins, JB; Leano, RL; Marwick, TH; Sharman, JE
American Journal of Hypertension, 21(6): 715-721.
10.1038/ajh.2008.166
CrossRef
Hypertension
Is gender crucial for cardiovascular adjustments induced by exercise training in female spontaneously hypertensive rats?
Coimbra, R; Sanchez, LS; Potenza, JM; Rossoni, LV; Amaral, SL; Michelini, LC
Hypertension, 52(3): 514-521.
10.1161/HYPERTENSIONAHA.108.114744
CrossRef
Acta Veterinaria Scandinavica
The effect of methyl sulphonyl methane supplementation on biomarkers of oxidative stress in sport horses following jumping exercise
Maranon, G; Munoz-Escassi, B; Manley, W; Garcia, C; Cayado, P; de la Muela, MS; Olabarri, B; Leon, R; Vara, E
Acta Veterinaria Scandinavica, 50(): -.
ARTN 45
CrossRef
Sports Medicine
Swimming Exercise Impact of Aquatic Exercise on Cardiovascular Health
Tanaka, H
Sports Medicine, 39(5): 377-387.

Cardiovascular Research
Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?
Kojda, G; Hambrecht, R
Cardiovascular Research, 67(2): 187-197.
10.1016/j.cardiores.2005.04.032
CrossRef
Heart
Exercise effects on cardiac size and left ventricular diastolic function: relationships to changes in fitness, fatness, blood pressure and insulin resistance
Stewart, KJ; Ouyang, P; Bacher, AC; Lima, S; Shapiro, EP
Heart, 92(7): 893-898.
10.1136/hrt.2005.079962
CrossRef
International Journal of Obesity
Self-selection contributes significantly to the lower adiposity of faster, longer-distanced, male and female walkers
Williams, PT
International Journal of Obesity, 31(4): 652-662.
10.1038/sj.ijo.0803457
CrossRef
Neurological Research
Acupuncture, a promising adjunctive therapy for essential hypertension: a double-blind, randomized, controlled trial
Yin, C; Seo, B; Park, HJ; Cho, M; Jung, W; Choue, R; Kim, C; Park, HK; Lee, H; Koh, H
Neurological Research, 29(): S98-S103.
10.1179/016164107X172220
CrossRef
European Journal of Applied Physiology
Effect of resistance training on arterial wave reflection and brachial artery reactivity in normotensive postmenopausal women
Casey, DP; Pierce, GL; Howe, KS; Mering, MC; Braith, RW
European Journal of Applied Physiology, 100(4): 403-408.
10.1007/s00421-007-0447-2
CrossRef
Transplantation Proceedings
Acute effects of a single dose of phosphodiesterase type 5 inhibitor (Sildenafil) on systemic arterial blood pressure during exercise and 24-hour ambulatory blood pressure monitoring in heart transplant recipients
Guimaraes, GV; d'Avila, VM; Pires, P; Bacal, F; Stolf, N; Bocchi, E
Transplantation Proceedings, 39(): 3142-3149.
10.1016/j.transproceed.2007.04.029
CrossRef
Journal of Aging and Physical Activity
A proposal for a new screening paradigm and tool called exercise assessment and screening for you (EASY)
Resnick, B; Ory, MG; Hora, K; Rogers, ME; Page, P; Bolin, JN; Lyle, RM; Sipe, C; Chodzko-Zajko, W; Bazzarre, TL
Journal of Aging and Physical Activity, 16(2): 215-233.

Journal of Clinical Hypertension
Hypertension in Athletes
Leddy, JJ; Izzo, J
Journal of Clinical Hypertension, 11(4): 226-233.
10.1111/j.1751-7176.2009.00100.x
CrossRef
Revista Brasileira De Medicina DO Esporte
Post-exercise Hypotension: a Systematic Review
Casonatto, J; Polito, MD
Revista Brasileira De Medicina DO Esporte, 15(2): 151-157.

Autonomic Neuroscience-Basic & Clinical
Central sympathetic overactivity: Maladies and mechanisms
Fisher, JP; Young, CN; Fadel, PJ
Autonomic Neuroscience-Basic & Clinical, 148(): 5-15.
10.1016/j.autneu.2009.02.003
CrossRef
Obesity
Diet and Exercise Interventions Reduce Intrahepatic Fat Content and Improve Insulin Sensitivity in Obese Older Adults
Shah, K; Stufflebam, A; Hilton, TN; Sinacore, DR; Klein, S; Villareal, DT
Obesity, 17(): 2162-2168.
10.1038/oby.2009.126
CrossRef
Cancer Causes & Control
Exercise interventions for cancer patients: systematic review of controlled trials
Stevinson, C; Lawlor, DA; Fox, KR
Cancer Causes & Control, 15(): 1035-1056.

European Journal of Applied Physiology
Comparison of two waist-mounted and two ankle-mounted electronic pedometers
Karabulut, M; Crouter, SE; Bassett, DR
European Journal of Applied Physiology, 95(4): 335-343.
10.1007/s00421-005-0018-3
CrossRef
Journal of Pharmacy and Pharmaceutical Sciences
Exercise hemodynamic and neurohormone responses as sensitive biomarkers for diltiazem in rats
Yeung, PKF; Feng, JD; Fice, D
Journal of Pharmacy and Pharmaceutical Sciences, 9(2): 245-251.

Clinical Science
The alpha-adducin Gly460Trp polymorphism and the antihypertensive effects of exercise among men with high blood pressure
Pescatello, LS; Blanchard, BE; Tsongalis, GJ; Maresh, CM; O'Connell, A; Thompson, PD
Clinical Science, 113(): 251-258.
10.1042/CS20060345
CrossRef
Cardiology Clinics
Athletes with systemic hypertension
Fagard, RH
Cardiology Clinics, 25(3): 441-+.
10.1016/j.ccl.2007.07.001
CrossRef
Patient Education and Counseling
Suitability and readability assessment of educational print resources related to physical activity: Implications and recommendations for practice
Vallance, JK; Taylor, LM; Lavallee, C
Patient Education and Counseling, 72(2): 342-349.
10.1016/j.pec.2008.03.010
CrossRef
Journal of Thermal Analysis and Calorimetry
Stability studies on nifedipine tablets using thermogravimetry and differential scanning calorimetry
Filho, ROC; Franco, PIBM; Conceicao, EC; Leles, MIG
Journal of Thermal Analysis and Calorimetry, 93(2): 381-385.
10.1007/s10973-007-8791-3
CrossRef
British Journal of Sports Medicine
Decreased exercise blood pressure in older adults after exercise training: contributions of increased fitness and decreased fatness
Barone, BB; Wang, NY; Bacher, AC; Stewart, KJ
British Journal of Sports Medicine, 43(1): 52-56.
10.1136/bjsm.2008.050906
CrossRef
World Psychiatry
Metabolic syndrome in people with schizophrenia: a review
De Hert, M; Schreurs, V; Vancampfort, D; Van Winkel, R
World Psychiatry, 8(1): 15-22.

Journal of Science and Medicine in Sport
Australian Association for Exercise and Sports Science Position Statement on Exercise and Hypertension
Sharman, JE; Stowasser, M
Journal of Science and Medicine in Sport, 12(2): 252-257.
10.1016/j.jsams.2008.10.009
CrossRef
Arquivos Brasileiros De Cardiologia
Blood Pressure Assessed through Oscillometric and Auscultatory Method Before and After Exercise in the Elderly
Scher, LMD; Ferriolli, E; Moriguti, JC; Lima, NKC
Arquivos Brasileiros De Cardiologia, 94(5): 656-662.

Perceptual and Motor Skills
Aerobic cycle exercising in a rehabilitation program with a wider choice of intensity
Mertesdorf, FL; Schmitz, K
Perceptual and Motor Skills, 100(1): 217-236.

Journal of Human Hypertension
The effects of exercise on haemodynamic function in relation to the familial hypertension risk model
Hamer, M
Journal of Human Hypertension, 20(5): 313-319.
10.1038/sj.jhh.1001999
CrossRef
Gerontology
Aerobic-anaerobic profiles, heart rate and match analysis in old basketball players
Tessitore, A; Tiberi, M; Cortis, C; Rapisarda, E; Meeusen, R; Capranica, L
Gerontology, 52(4): 214-222.
10.1159/000093653
CrossRef
Heart Failure Reviews
Resistance exercise: training adaptations and developing a safe exercise prescription
Braith, RW; Beck, DT
Heart Failure Reviews, 13(1): 69-79.
10.1007/s10741-007-9055-9
CrossRef
Revista Da Associacao Medica Brasileira
The influence of programmed physical activity on blood pressure of hypertensive elderly patients on non-pharmacological treatment
Barroso, WKS; Jardim, PCBV; Vitorino, PV; Bittencourt, A; Miquetichuc, F
Revista Da Associacao Medica Brasileira, 54(4): 328-333.

Clinical and Experimental Hypertension
Voluntary wheel running and pacing-induced dysfunction in hypertension
Kolwicz, SC; MacDonnell, SM; Kendrick, ZV; Houser, SR; Libonati, JR
Clinical and Experimental Hypertension, 30(7): 565-573.
10.1080/10641960802251891
CrossRef
Nephrology
Immediate blood pressure-lowering effects of aerobic exercise among patients with chronic kidney disease
Headley, SA; Germain, MJ; Milch, CM; Buchholz, MP; Coughlin, MA; Pescatello, LS
Nephrology, 13(7): 601-606.
10.1111/j.1440-1797.2008.01030.x
CrossRef
Journal of Aging and Physical Activity
Health, Medical Risk Factors, and Bicycle Use in Everyday Life in the Over-50 Population
Huy, C; Becker, S; Gomolinsky, U; Klein, T; Thiel, A
Journal of Aging and Physical Activity, 16(4): 454-464.

Journal of Orthopaedic Research
Three-Dimensional Knee Joint Kinematics during Golf Swing and Stationary Cycling after Total Knee Arthroplasty
Hamai, S; Miura, H; Higaki, H; Shimoto, T; Matsuda, S; Okazaki, K; Iwamoto, Y
Journal of Orthopaedic Research, 26(): 1556-1561.
10.1002/jor.20671
CrossRef
Journal of Physiology-London
Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases
Mori, M; Higuchi, K; Sakurai, A; Tabara, Y; Miki, T; Nose, H
Journal of Physiology-London, 587(): 5577-5584.
10.1113/jphysiol.2009.179283
CrossRef
Journal of the American College of Cardiology
Physical Activity Reduces Systemic Blood Pressure and Improves Early Markers of Atherosclerosis in Pre-Pubertal Obese Children
Farpour-Lambert, NJ; Aggoun, Y; Marchand, LM; Martin, XE; Herrmann, FR; Beghetti, M
Journal of the American College of Cardiology, 54(): 2396-2406.
10.1016/j.jacc.2009.08.030
CrossRef
Medicina Dello Sport
Cardiological protocols for eligibility guidlines for intensive sports 2003
Bettini, R; Caselli, G; D'Andrea, L; Delise, P; Giada, F; Guiducci, U; Notaristefano, A; Pelliccia, A; Penco, M; Proto, C; Spataro, A; Thiene, G; Vilella, A; Zeppilli, P
Medicina Dello Sport, 57(4): 375-438.

Knee
Sporting and physical activity following Oxford medial unicompartmental knee arthroplasty
Fisher, N; Agarwal, M; Reuben, SF; Johnson, DS; Turner, PG
Knee, 13(4): 296-300.
10.1016/j.knee.2006.03.004
CrossRef
Cardiology in the Young
Who benefits from intervention in, as opposed to screening of, overweight and obese children?
Graf, C; Koch, B; Bjarnason-Wehrens, B; Sreeram, N; Brockmeier, K; Tokarski, W; Dordel, S; Predel, HG
Cardiology in the Young, 16(5): 474-480.
10.1017/S10479511060oo667
CrossRef
Biological Chemistry
Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers
Moraes, MR; Bacurau, RFR; Ramalho, JDS; Reis, FCG; Casarini, DE; Chagas, JR; Oliveira, V; Higa, EMS; Abdalla, DSR; Pesquero, JL; Pesquero, JB; Araujo, RC
Biological Chemistry, 388(5): 533-540.
10.1515/BC.2007.055
CrossRef
Gender Medicine
Sex differences in the effects of aerobic and anaerobic exercise on mood pressure and arterial stiffness
Collier, SR
Gender Medicine, 5(2): 115-123.
10.1016/j.genm.2008.06.002
CrossRef
International Sportmed Journal
Antihypertensive medications and exercise
Derman, W
International Sportmed Journal, 9(1): 32-38.

Chronobiology International
Effects of Time of Day on Post-Exercise Blood Pressure: Circadian or Sleep-Related Influences?
Jones, H; George, K; Edwards, B; Atkinson, G
Chronobiology International, 25(6): 987-998.
10.1080/07420520802548044
CrossRef
Clinical Cardiology
Cardiorespiratory Fitness and Sedentary Lifestyle in the Morbidly Obese
Vanhecke, TE; Franklin, BA; Miller, WM; Dejong, AT; Coleman, CJ; McCullough, PA
Clinical Cardiology, 32(3): 121-124.
10.1002/clc.20458
CrossRef
Danish Medical Bulletin
Physical activity in leisure time: impact on mortality Risks and benefits
Schnohr, P
Danish Medical Bulletin, 56(1): 40-71.

British Journal of Sports Medicine
Effect of 12 weeks of moderate-intensity resistance training on arterial stiffness: a randomised controlled trial in women aged 32-59 years
Yoshizawa, M; Maeda, S; Miyaki, A; Misono, M; Saito, Y; Tanabe, K; Kuno, S; Ajisaka, R
British Journal of Sports Medicine, 43(8): 615-618.
10.1136/bjsm.2008.052126
CrossRef
African Health Sciences
Effects of aerobic exercise and drug therapy on blood pressure and antihypertensive drugs: a randomized controlled trial
Maruf, FA; Akinpelu, AO; Salako, BL
African Health Sciences, 13(1): 1-9.

Revista Brasileira De Medicina DO Esporte
Walking/Running or A Recreative Soccer Game Presents Similar Effectiveness in Inducing Post-Exercise Hypotension
da Nobrega, TKS; Moura, JS; Brito, AD; Goncalves, MCR; Martins, CD; Silva, AS
Revista Brasileira De Medicina DO Esporte, 19(1): 31-34.

Metabolic Syndrome and Related Disorders
Exercise-Induced Hypertension in Men with Metabolic Syndrome: Anthropometric, Metabolic, and Hemodynamic Features
Gaudreault, V; Despres, JP; Rheaume, C; Almeras, N; Bergeron, J; Tremblay, A; Poirier, P
Metabolic Syndrome and Related Disorders, 11(1): 7-14.
10.1089/met.2012.0071
CrossRef
Nutricion Hospitalaria
Effects on adolescents' lipid profile of a fitness-enhancing intervention in the school setting: the EDUFIT study
Ardoy, DN; Artero, EG; Ruiz, JR; Labayen, I; Sjostrom, M; Castillo, MJ; Ortega, FB
Nutricion Hospitalaria, 28(1): 119-126.
10.3305/nh.2013.28.1.6146
CrossRef
Psychophysiology
Cardiovascular stress reactivity tasks successfully predict the hypotensive response of isometric handgrip training in hypertensives
Badrov, MB; Horton, S; Millar, PJ; McGowan, CL
Psychophysiology, 50(4): 407-414.
10.1111/psyp.12031
CrossRef
Circulation
Exercise Standards for Testing and Training: A Scientific Statement From the American Heart Association
Fletcher, GF; Ades, PA; Kligfield, P; Arena, R; Balady, GJ; Bittner, VA; Coke, LA; Fleg, JL; Forman, DE; Gerber, TC; Gulati, M; Madan, K; Rhodes, J; Thompson, PD; Williams, MA
Circulation, 128(8): 873-934.
10.1161/CIR.0b013e31829b5b44
CrossRef
British Journal of Sports Medicine
High ambulatory blood pressure in male professional football players
Berge, HM; Andersen, TE; Solberg, EE; Steine, K
British Journal of Sports Medicine, 47(8): 521-+.
10.1136/bjsports-2013-092354
CrossRef
Hypertension Research
The effects of angiotensin receptor blockers vs. calcium channel blockers on the acute exercise-induced inflammatory and thrombotic response
Liakos, CI; Vyssoulis, GP; Michaelides, AP; Chatzistamatiou, EI; Theodosiades, G; Toutouza, MG; Markou, MI; Synetos, AG; Kallikazaros, IE; Stefanadis, CI
Hypertension Research, 35(): 1193-1200.
10.1038/hr.2012.134
CrossRef
Physiological Genomics
Transcriptome of the NTS in exercise-trained spontaneously hypertensive rats: implications for NTS function and plasticity in regulating blood pressure
Waki, H; Gouraud, SS; Bhuiyan, MER; Takagishi, M; Yamazaki, T; Kohsaka, A; Maeda, M
Physiological Genomics, 45(1): 58-67.
10.1152/physiolgenomics.00074.2012
CrossRef
Archives of Disease in Childhood
Resting heart rate in children and adolescents: association with blood pressure, exercise and obesity
Kwok, SY; So, HK; Choi, KC; Lo, AFC; Li, AM; Sung, RYT; Nelson, EAS
Archives of Disease in Childhood, 98(4): 287-291.
10.1136/archdischild-2012-302794
CrossRef
Current Hypertension Reports
Exercise Training and Cardiometabolic Diseases: Focus on the Vascular System
Roque, FR; Hernanz, R; Salaices, M; Briones, AM
Current Hypertension Reports, 15(3): 204-214.
10.1007/s11906-013-0336-5
CrossRef
Plos One
Physical Exercise Performance in Temperate and Warm Environments Is Decreased by an Impaired Arterial Baroreflex
Pires, W; Wanner, SP; Lima, MRM; Fonseca, IAT; Fumega, U; Haibara, AS; Coimbra, CC; Lima, NRV
Plos One, 8(8): -.
10.1371/journal.pone.0072005
CrossRef
European Journal of Public Health
Active over 45: a step-up jogging programme for inactive female hospital staff members aged 45+
Pfister, PB; Niedermann, K; Sidelnikov, E; Bischoff-Ferrari, HA
European Journal of Public Health, 23(5): 817-822.
10.1093/eurpub/ckt027
CrossRef
Experimental Gerontology
A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men
Sousa, N; Mendes, R; Abrantes, C; Sampaio, J; Oliveira, J
Experimental Gerontology, 48(8): 727-733.
10.1016/j.exger.2013.04.008
CrossRef
Cardiorenal Medicine
Physical Activity in the Prevention of Chronic Kidney Disease
Stump, CS
Cardiorenal Medicine, 1(3): 164-173.
10.1159/000329929
CrossRef
Medicine & Science in Sports & Exercise
Recovery Pattern of Baroreflex Sensitivity after Exercise
NIEMELÄ, TH; KIVINIEMI, AM; HAUTALA, AJ; SALMI, JA; LINNAMO, V; TULPPO, MP
Medicine & Science in Sports & Exercise, 40(5): 864-870.
10.1249/MSS.0b013e3181666f08
PDF (368) | CrossRef
Medicine & Science in Sports & Exercise
Effect of Intensity of Aerobic Training on V˙O2max
GORMLEY, SE; SWAIN, DP; HIGH, R; SPINA, RJ; DOWLING, EA; KOTIPALLI, US; GANDRAKOTA, R
Medicine & Science in Sports & Exercise, 40(7): 1336-1343.
10.1249/MSS.0b013e31816c4839
PDF (164) | CrossRef
Medicine & Science in Sports & Exercise
Exercise and Physical Activity for Older Adults
Chodzko-Zajko, WJ; Proctor, DN; Fiatarone Singh, MA; Minson, CT; Nigg, CR; Salem, GJ; Skinner, JS
Medicine & Science in Sports & Exercise, 41(7): 1510-1530.
10.1249/MSS.0b013e3181a0c95c
PDF (305) | CrossRef
Medicine & Science in Sports & Exercise
Cardiorespiratory Fitness, BMI, and Risk of Hypertension: The HYPGENE Study
RANKINEN, T; CHURCH, TS; RICE, T; BOUCHARD, C; BLAIR, SN
Medicine & Science in Sports & Exercise, 39(10): 1687-1692.
10.1249/mss.0b013e31812e527f
PDF (185) | CrossRef
Medicine & Science in Sports & Exercise
Influences of Normobaric Hypoxia Training on Metabolic Risk Markers in Human Subjects
HAUFE, S; WIESNER, S; ENGELI, S; LUFT, FC; JORDAN, J
Medicine & Science in Sports & Exercise, 40(11): 1939-1944.
10.1249/MSS.0b013e31817f1988
PDF (326) | CrossRef
Blood Pressure Monitoring
Resistance training reduces the blood pressure response of older men during submaximum aerobic exercise
Lovell, DI; Cuneo, R; Gass, GC
Blood Pressure Monitoring, 14(4): 137-144.
10.1097/MBP.0b013e32832e0644
PDF (122) | CrossRef
European Journal of Cardiovascular Prevention & Rehabilitation
ESC Study Group of Sports Cardiology Recommendations for participation in leisure-time physical activities and competitive sports for patients with hypertension
Fagard, RH; Björnstad, HH; Børjesson, M; Carré, F; Deligiannis, A; Vanhees, L
European Journal of Cardiovascular Prevention & Rehabilitation, 12(4): 326-331.

PDF (84)
Journal of Hypertension
Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials
Cornelissen, VA; Fagard, RH
Journal of Hypertension, 23(2): 251-259.

PDF (171)
Journal of Hypertension
Isometric handgrip exercise and resting blood pressure: a meta-analysis of randomized controlled trials
Kelley, GA; Kelley, KS
Journal of Hypertension, 28(3): 411-418.
10.1097/HJH.0b013e3283357d16
PDF (281) | CrossRef
Journal of Hypertension
Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age
Cornelissen, VA; Arnout, J; Holvoet, P; Fagard, RH
Journal of Hypertension, 27(4): 753-762.
10.1097/HJH.0b013e328322cf60
PDF (186) | CrossRef
Journal of Hypertension
The relationship between baseline blood pressure and magnitude of postexercise hypotension
Pescatello, LS; Blanchard, BE; O'Connell, AA
Journal of Hypertension, 23(6): 1272-1273.

PDF (114)
Journal of Hypertension
2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)
Boudier, HA; Zanchetti, A; Authors/Task Force Members:, ; Mancia, G; De Backer, G; Dominiczak, A; Cifkova, R; Fagard, R; Germano, G; Grassi, G; Heagerty, AM; Kjeldsen, SE; Laurent, S; Narkiewicz, K; Ruilope, L; Rynkiewicz, A; Schmieder, RE
Journal of Hypertension, 25(6): 1105-1187.
10.1097/HJH.0b013e3281fc975a
PDF (1131) | CrossRef
Journal of Hypertension
Accumulation of physical activity leads to a greater blood pressure reduction than a single continuous session, in prehypertension
Park, S; Rink, LD; Wallace, JP
Journal of Hypertension, 24(9): 1761-1770.
10.1097/01.hjh.0000242400.37967.54
PDF (205) | CrossRef
The Journal of Strength & Conditioning Research
Clinic and Ambulatory Blood Pressure Responses After Resistance Exercise
Queiroz, AC; Gagliardi, JF; Forjaz, CL; Rezk, CC
The Journal of Strength & Conditioning Research, 23(2): 571-578.
10.1519/JSC.0b013e318196b637
PDF (145) | CrossRef
The Journal of Strength & Conditioning Research
Effects of Treadmill Running and Resistance Exercises on Lowering Blood Pressure During the Daily Work of Hypertensive Subjects
Mota, MR; Pardono, E; Lima, LC; Arsa, G; Bottaro, M; Campbell, CS; Simões, HG
The Journal of Strength & Conditioning Research, 23(8): 2331-2338.
10.1519/JSC.0b013e3181bac418
PDF (267) | CrossRef
ACSM's Health & Fitness Journal
Think Thirty
Humprey, RH
ACSM's Health & Fitness Journal, 11(6): 40-41.
10.1249/01.FIT.0000298456.32685.88
PDF (277) | CrossRef
Medicine & Science in Sports & Exercise
Estrogen Receptor-α Genotype Affects Exercise-Related Reduction of Arterial Stiffness
HAYASHI, K; MAEDA, S; IEMITSU, M; OTSUKI, T; SUGAWARA, J; TANABE, T; MIYAUCHI, T; KUNO, S; AJISAKA, R; MATSUDA, M
Medicine & Science in Sports & Exercise, 40(2): 252-257.
10.1249/mss.0b013e31815c04cf
PDF (137) | CrossRef
Medicine & Science in Sports & Exercise
Muscular Strength and Incident Hypertension in Normotensive and Prehypertensive Men
MASLOW, AL; SUI, X; COLABIANCHI, N; HUSSEY, J; BLAIR, SN
Medicine & Science in Sports & Exercise, 42(2): 288-295.
10.1249/MSS.0b013e3181b2f0a4
PDF (413) | CrossRef
Medicine & Science in Sports & Exercise
Accumulation of Physical Activity Reduces Blood Pressure in Pre- and Hypertension
PADILLA, J; WALLACE, JP; PARK, S
Medicine & Science in Sports & Exercise, 37(8): 1264-1275.

PDF (1206)
Medicine & Science in Sports & Exercise
Relationship of Running Intensity to Hypertension, Hypercholesterolemia, and Diabetes
WILLIAMS, PT
Medicine & Science in Sports & Exercise, 40(10): 1740-1748.
10.1249/MSS.0b013e31817b8ed1
PDF (331) | CrossRef
Blood Pressure Monitoring
Postexercise hypotension induced by low-intensity resistance exercise in hypertensive women receiving captopril
Melo, CM; Alencar Filho, AC; Tinucci, T; Mion, D; Forjaz, CL
Blood Pressure Monitoring, 11(4): 183-189.
10.1097/01.mbp.0000218000.42710.91
PDF (122) | CrossRef
Clinical Journal of Sport Medicine
Aftereffects of Exercise and Relaxation on Blood Pressure
Santaella, DF; Araújo, EA; Ortega, KC; Tinucci, T; Mion, D; Negrão, CE; de Moraes Forjaz, CL
Clinical Journal of Sport Medicine, 16(4): 341-347.

PDF (166)
European Journal of Cardiovascular Prevention & Rehabilitation
Effect of exercise on blood pressure control in hypertensive patients
Fagard, RH; Cornelissen, VA
European Journal of Cardiovascular Prevention & Rehabilitation, 14(1): 12-17.
10.1097/HJR.0b013e3280128bbb
PDF (86) | CrossRef
Journal of Cardiopulmonary Rehabilitation and Prevention
Exercise Training for Cardiometabolic Adaptation After Stroke
Ivey, FM; Hafer-Macko, CE; Macko, RF
Journal of Cardiopulmonary Rehabilitation and Prevention, 28(1): 2-11.
10.1097/01.HCR.0000311501.57022.a8
PDF (630) | CrossRef
Journal of Hypertension
Physical activity, physical fitness and the incidence of hypertension
Fagard, RH
Journal of Hypertension, 23(2): 265-267.

PDF (63)
The Journal of Strength & Conditioning Research
Postresistance Exercise Blood Pressure Reduction is Influenced by Exercise Intensity in Type-2 Diabetic and Nondiabetic Individuals
Simões, GC; Moreira, SR; Kushnick, MR; Simões, HG; Campbell, CS
The Journal of Strength & Conditioning Research, 24(5): 1277-1284.
10.1519/JSC.0b013e3181d67488
PDF (174) | CrossRef
The Journal of Strength & Conditioning Research
The Effects of Muscle Mass and Number of Sets During Resistance Exercise on Postexercise Hypotension
Polito, MD; Farinatti, PT
The Journal of Strength & Conditioning Research, 23(8): 2351-2357.
10.1519/JSC.0b013e3181bb71aa
PDF (135) | CrossRef
Back to Top | Article Outline

©2004The American College of Sports Medicine

Login

Article Tools

Images

Share

Connect With Us