Share this article on:

Plasma Rich in Growth Factors to Treat an Articular Cartilage Avulsion: A Case Report


Medicine & Science in Sports & Exercise: October 2003 - Volume 35 - Issue 10 - pp 1648-1652
CLINICAL SCIENCES: Clinical Case Studies

SÁNCHEZ, M., J. AZOFRA, E. ANITUA, I. ANDÍA, S. PADILLA, J. SANTISTEBAN, and I. MUJIKA. Plasma Rich in Growth Factors to Treat an Articular Cartilage Avulsion: A Case Report. Med. Sci. Sports Exerc., Vol. 35, No. 10, pp. 1648–1652, 2003.

Introduction: The application of an autologous plasma rich in growth factors is beneficial in restoring connective tissues, as shown by clinical evidence in oral surgery and more recently in arthroscopic anterior cruciate ligament reconstruction and two cases of ruptured Achilles tendon in professional athletes. This is attributed to the slow delivery of growth factors from harvested platelets that have been activated by endogenous thrombin promoted by the addition of calcium chloride.

Purpose: This case report describes a new application of this therapy in the arthroscopic treatment of a large, nontraumatic avulsion of articular cartilage in the knee of an adolescent soccer player.

Methods: After arthroscopic reattachment of the large (>2 cm) loose chondral body in its crater in the medial femoral condyle, autologous plasma rich in growth factors was injected into the area between the crater and the fixed fragment.

Results and Conclusion: Despite the extremely poor prognosis of the case, complete articular cartilage healing was considerably accelerated, and the functional outcome was excellent, allowing a rapid resumption of symptom-free athletic activity. This technique opens new perspectives for human tissue regeneration.

Avulsions of articular cartilage are not uncommon among athletically active children and adolescents. As in cases of osteochondritis dissecans, the medial femoral condyle of the knee joint is the most commonly affected area, and although the etiology of this condition remains speculative, repetitive microtrauma is considered to be associated with it (1,12,22,25). Patients with open distal femoral physis usually have a more favorable prognosis for healing with nonoperative treatment, but not all lesions in the skeletally immature patient heal without operative intervention, and surgical treatment is indicated for detached lesions (2,8,12,20,27). Given its lack of blood supply, lymphatic drainage, or neural elements, articular cartilage possesses a limited capability to regenerate after significant mechanical destruction of the cells and collagen scaffold (6,7,18). Recent reports in animal models suggest that the process of cartilage healing in vivo may be improved by growth factors, which are small proteins synthesized both by local cells at the injury site and by infiltrated blood-borne inflammatory cells. These factors stimulate cell proliferation, migration, differentiation, and matrix synthesis and can affect chondrocyte metabolism, chondrogenesis, and improve cartilage healing in vivo (7,9,10,14,17,18,26).

Growth factors could therefore be considered suitable tools to enhance cartilage repair. However, the most appropriate way to use these growth factors is not known. Our work is based on the use of an autologous plasma rich in growth factors (PRGF) obtained from the patient’s own blood by means of a simple procedure. Our hypothesis is that the presence of PRGF in the surgical site accelerates the regeneration of local tissues by a mechanism that reproduces the initial physiological steps of tissue repair: upon activation, platelets aggregate producing a clot, and secrete a variety of cytokines, including adhesive proteins and growth factors such as platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor I (IGF-I), and epidermal growth factor (EGF). These substances act on local cells inducing specific responses.

Until now, autologous PRGF has been shown to enhance and accelerate soft tissue repair and bone regeneration in the preparation of future sites for dental implants (3,4), and to enhance postsurgery healing and remodeling of anterior cruciate ligament grafts (23) and ruptured Achilles tendons in professional athletes (unpublished observations). These successful clinical results, along with the above-mentioned observations from animal models, provided a rationale for the application of PRGF in a case of arthroscopically treated avulsion of articular cartilage in the knee joint, in an attempt to accelerate articular cartilage healing and complete functional recovery.

The purpose of this report was to describe a novel application of autologous PRGF in the arthroscopic treatment of a large, nontraumatic avulsion of knee articular cartilage, which appeared to be effective in enhancing and accelerating healing, hence functional recovery, in an adolescent soccer player. In conformance with the policy of the American College of Sports Medicine, the subject’s parents provided written informed consent to undergo and publish the following medical procedures, which were approved by the Ethics Committee of the Universidad del País Vasco-Euskal Herriko Unibertsitatea.

1Arthroscopic Surgery Unit, USP-La Esperanza Clinic, Vitoria-Gasteiz, Basque Country, SPAIN;

2B.T.I. Biotechnology Institute, Vitoria-Gasteiz, Basque Country, SPAIN;

3Department of Neurochemistry Research, Osakidetza–Basque Health Service, Zamudio, Basque Country, SPAIN; and

4Department of Research and Development, Medical Services, Athletic Club of Bilbao, Basque Country, SPAIN

Address for correspondence: Iñigo Mujika, Ph.D., Mediplan Sport S.L., Obdulio López de Uralde 4, bajo, 01008 Vitoria–Gasteiz, Basque Country, Spain; E-mail:

Submitted for publication December 2002.

Accepted for publication June 2003.

Back to Top | Article Outline


At presentation, a 12-yr-old soccer player reported feeling a sudden sharp pain and locking of his right knee during a training session. After clinical evaluation and MRI he was diagnosed with a large, nontraumatic avulsion of knee articular cartilage. The lesion was located in the medial femoral condyle (Fig. 1), and a large (>2 cm) loose chondral body was detected in the intercondylar fossa area (Fig. 2).

Back to Top | Article Outline


Forty milliliters of venous blood were withdrawn by venous puncture from an antecubital vein 20–30 min before surgery and administration of anesthesia. Blood was collected on 5-mL tubes containing 3.8% (w/v) trisodium citrate, then centrifuged at 1800 rpm for 8 min (PRGF System II, BTI, Vitoria-Gasteiz, Spain). The 0.25-mL fractions located immediately above the erythrocytes were collected from each tube and transferred to sterile tubes. Fifty microliters of CaCl2 at 10% (w/v) were added per 1-mL fraction of platelet-enriched plasma. This preparation was injected (see below) with no delay to allow the self-assembling of the fibrin just in the gap between the fragment and its bed, providing a supportive scaffold during the healing process to facilitate tissue maturation.

Back to Top | Article Outline

Surgical procedure.

Knee arthroscopic surgery was performed under general anesthesia and using the usual portals. After debridement of the crater with a curette, the loose chondral fragment was placed in its bed with a push rod then fixed with five 40 mm × 1.3 mm Ø biodegradable pins (Orthosorb® Resorbable Pin, De PuyACE Medical Company, Warsaw, IN) (Fig. 3). The full-thickness loose chondral fragment had no bone attached to it and was flexible. It fit perfectly in its bed after careful removal of a layer of initial scar tissue in its deep face with a shaver. Next, the knee was vacuumed, and a hole was drilled through the reattached chondral fragment with a Kirschner wire. Approximately 2.0 mL of the activated PRGF preparation (as described above) were then injected through the hole and into the area between the crater and the fixed fragment, filling up any existing mismatch between the crater and fragment and sealing the edges of the reattached fragment. Prophylactic treatment with antibiotics and antithrombotics was established after surgery.

Back to Top | Article Outline

Postoperative management and follow-up.

Postoperatively, the patient was allowed to walk using elbow crutches, but he was maintained nonweight-bearing for 4 wk, wearing a knee brace with limited range of motion. Two weeks after surgery (Fig. 4), physical therapy was initiated, with range-of-motion exercises without axial loading. Weeks 4–8 after surgery were supposed to be of partial weight-bearing with elbow crutches. However, compliance with activity restriction was problematic, and by the sixth week after surgery, the subject could not be prevented from running and actively participating in games and sports in school (Fig. 5), even though he was not allowed to take part in formal soccer training. Unloaded stationary bicycling and strengthening exercises without axial loading were included in the recovery process between weeks 9 and 18 after surgery. The subject was allowed back in formal training with his teammates 18 wk after surgery (Fig. 6). At the time of writing, 38 wk after surgery, the subject was fully involved in training and competition without any recurrent symptoms.

Back to Top | Article Outline


The prognosis for healing after reattachment of a loose articular cartilage fragment is less favorable when the lesion is large (>2 cm in diameter), it does not extend into the vascularized subchondral area, and the fragment is purely articular cartilage and lacks subchondral bone (7,12,15,18,20,25). In this report, we have described our observation of enhanced articular cartilage healing, which led to accelerated functional recovery, by applying PRGF in a case of arthroscopically treated avulsion of articular cartilage with less favorable prognosis. The observed healing process and reattachment of the chondral body was outstanding, given that the usual operative treatment indicated for this type of lesion would have required fragment removal and crater drilling, curettage, mosaicplasty, rigid internal fixation, or autologous chondrocyte transplantation (12,25,27). Unfortunately, the long-term results of fragment excision have been described as extremely poor, even in patients treated before skeletal maturity (2), and potential disadvantages of the other operative treatments include creation of fibrocartilaginous channels, damage to the articular cartilage, donor site morbidity, and uneven articular congruence fit (12,27). The observed functional outcome was also excellent, with complete functional recovery and symptom-free resumption of normal athletic activity 18 wk after surgery. Even though this should be viewed as a preliminary report and the results cannot be unquestionably attributed to the application of PRGF based on a single case with a relatively short follow-up period, the application of PRGF could represent an interesting new technique to enhance the healing of a detached piece of articular cartilage.

Ability to repair articular knee lesions is dependent on cellularity and on the rate of matrix turnover per chondrocyte. Cell density could be enhanced considerably by local delivery of growth factors by chemotaxis and/or mitosis of local and attracted cells. Recent studies in tissue engineering have provided experimental evidence of the role of IGF-I, PDGF, TGF-β, EGF, and bFGF in chondrocyte proliferation (5,11,16,19). As cells cannot grow in an empty space, it is very important to provide a scaffold that could maintain cells adhered in the defect during the healing process. Fibrin could act as a supportive matrix and promote further tissue maturation (21). Furthermore, if this scaffold is soaked in active biological agents that are capable of inducing matrix production, such as growth factors (11), all these favorable circumstances taken together may potentially enhance the regeneration of cartilaginous tissue. In vitro studies show that three-dimensional systems are required for chondrocyte function and that interaction of the cell with its surrounding environment has a major effect in cell metabolism (13,24). In this respect, the fibrin scaffold soaked with a physiologically designed combination of growth factors may interact with the local cells and other cells attracted by chemotaxis and control cell repair mechanisms.

Consequently, to take advantage of the repair and regenerative potential of these substances, we have associated the use of growth factors and arthroscopic surgery to treat this large avulsion of articular cartilage with less favorable prognosis. This novel strategy consists of using the autologous fibrin as a three-dimensional carrier of growth factors and adhesive proteins contained in platelets. We have designed a simple and reproducible protocol to provide a natural source of growth factors that are greatly involved in repair processes. The PRGF preparation is easily obtained and manipulated, and the only concern is that once activated with calcium chloride it must be applied without delay to allow “in situ” self-assembling of the fibrin net and preservation of growth factor activity (3). In addition to a high concentration of growth factors, this preparation exhibits no antigenic capacity and preserves the integrity of platelets, which release the contents of alpha granules after activation of the concentrate (4).

Back to Top | Article Outline


In conclusion, the new application of PRGF-assisted regenerative technique could have contributed to enhance and accelerate articular cartilage healing after arthroscopic treatment of a large, nontraumatic avulsion of knee articular cartilage in an adolescent soccer player. This PRGF therapy is easy to implement, requires only about 40 mL of autologous blood, and the risk of disease transmission or antigenic reaction is nonexistent as autologous blood is not mixed with any other component of animal or human origin. Even though the present preliminary results need to be confirmed in a large cohort of patients, this PRGF-assisted tissue regeneration technique opens new perspectives in the area of human tissue regeneration and could become a valuable tool to treat a wide range of musculoskeletal injuries. Refinement of the PRGF technique and its further clinical applications as a potential stimulator in tissue repair are at present being evaluated by the authors.

Back to Top | Article Outline


1. Aichroth, P. Osteochondritis dissecans of the knee: a clinical survey. J. Bone Joint Surg. 53: 440–447, 1971.
2. Anderson, A. F., and M. J. Pagnani. Osteochondritis dissecans of the femoral condyles: long-term results of excision of the fragment. Am. J. Sports Med. 25: 830–834, 1997.
3. Anitua, E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int. J. Oral Maxillofac. Implants 14: 529–535, 1999.
4. Anitua, E. The use of plasma-rich growth factors (PRGF) in oral surgery. Pract. Proced. Aesthet. Dent. 13: 487–493, 2001.
5. Benz, K., S. Breit, M. Lukoschek, H. Mau, and W. Richter. Molecular analysis of expansion, differentiation and growth factor treatment of human chondrocytes identifies differentiation markers and growth related genes. Biochem. Biophys. Res. Commun. 293: 284–292, 2002.
6. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interaction. Instr. Course Lect. 47: 477–486, 1998.
7. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47: 487–504, 1998.
8. Cahill, B. R. Osteochondritis dissecans of the knee: treatment of juvenile and adult form. J. Am. Acad. Orthop. Surg. 3: 237–247, 1995.
9. Frenkel, S. R., P. B. Saadeh, B. J. Mehrara, et al. Transforming growth factor beta superfamily members: role in cartilage modeling. Plast. Reconstr. Surg. 105: 980–990, 2000.
10. Hiraki, Y., C. Shukunami, K. Iyama, and H. Mizuta. Differentiation of chondrogenic precursor cells during the regeneration of articular cartilage. Osteoarth. Cartil. 9: S102–S108, 2001.
11. Jakob, M., O. Demarteau, D. Schafer, et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell Biochem. 81: 368–377, 2001.
12. Kocher, M. S., L. J. Micheli, M. Yaniv, D. Zurakowski, A. Ames, and A. A. Adrignolo. Functional and radiographic outcome of juvenile osteochondritis dissecans of the knee treated with transarticular arthroscopic drilling. Am. J. Sports Med. 29: 562–566, 2001.
13. Larson, C. M., S. S. Kelley, A. D. Blackwood, A. J. Banes, and G. M. Lee. Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production. Matrix Biol. 21: 349–359, 2002.
14. Lee, K. H., S. U. Song, T. S. Hwang, et al. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts. Hum. Gene Ther. 12: 1805–1813, 2001.
15. Maletius, W., and M. Lundberg. Refixation of large chondral fragments on the weight-bearing area of the knee joint: a report of two cases. Arthroscopy 10: 630–633, 1994.
16. Martin, I., R. Suetterlin, W. Baschong, M. Heberer, G. Vunjak-Novakovic, and L. E. Freed. Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2-D expansion and BMP-2 during 3-D cultivation. J. Cell Biochem. 83: 121–8, 2001.
17. Martinek, V., F. H. Fu, and J. Huard. Gene therapy and tissue engineering in sports medicine. Phys. Sports Med. 28: 34–51, 2000.
18. Martinek, V., F. H. Fu, C. W. Lee, and J. Huard. Treatment of osteochondral injuries: genetic engineering. Clin. Sports Med. 20: 403–416, 2001.
19. Okazaki, R., A. Sakai, Y. Uezono, et al. Sequential changes of transforming growth factor (TGF)-beta1 concentration in synovial fluid and mRNA expression of TGF-beta1 receptors in chondrocytes after immobilization of rabbit knees. J. Bone Miner. Metab. 19: 228–35, 2001.
20. Paletta, G. A. Jr., P. A. Bednarz, C. L. Stanitski, G. A. Sandman, D. F. Stanitski, and S. Kottamasu. The prognostic value of quantitative bone scan in knee osteochondritis dissecans: a preliminary experience. Am. J. Sports Med. 26: 7–14, 1998.
21. Perka, C., U. Arnold, R. S. Spitzer, and K. Lindenhayn. The use of fibrin beads for tissue engineering and subsequential transplantation. Tissue Eng. 7: 359–361, 2001.
22. Peters, T. A., and I. D. Mclean. Osteochondritis dissecans of the patellofemoral joint. Am. J. Sports Med. 28: 63–67, 2000.
23. Sánchez, M., J. Azofra, B. Aizpurúa, R. Elorriaga, E. Anitua, and I. Andía. Use of autologous plasma rich in growth factors in arthroscopic surgery (article in Spanish). Cuader. Artroscopia 10: 12–19, 2003.
24. Schnabel, M., S. Marlovits, G. Eckhoff, et al. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr. Cartil. 10: 62–70, 2002.
25. Strobel, M. J. Manual of Arthroscopic Surgery. Berlin: Springer-Verlag, 2002, pp. 297–330.
26. Van Der Berg, W. B., P. M. Van Der Kraan, A. Scharstuhl, and H. M. van Beuningen. Growth factors and cartilage repair. Clin. Orthop. 391: S244–S250, 2001.
27. Yoshizumi, Y., T. Sugita, T. Kawamata, M. Ohnuma, and S. Maeda. Cylindrical osteochondral graft for osteochondritis dissecans of the knee. Am. J. Sports Med. 30: 441–445, 2002.


©2003The American College of Sports Medicine