Skip Navigation LinksHome > September 2000 - Volume 32 - Issue 9 > Estimation of energy expenditure using CSA accelerometers at...
Medicine & Science in Sports & Exercise:
Measurement of Moderate Physical Activity: Advances in Assessment Techniques

Estimation of energy expenditure using CSA accelerometers at hip and wrist sites

SWARTZ, ANN M.; STRATH, SCOTT J.; BASSETT, DAVID R. JR.; O’BRIEN, WILLIAM L.; KING, GEORGE A.; AINSWORTH, BARBARA E.

Free Access
Article Outline
Collapse Box

Author Information

Department of Exercise Science and Sport Management, University of Tennessee, Knoxville, TN 37996; and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208

Address for correspondence: Ann M. Swartz, Dept. of Exercise Science and Sport Management, University of Tennessee, 1914 Andy Holt Ave., Knoxville, TN 37996; E-mail: aswartz@utkux.utcc.utk.edu.

Collapse Box

Abstract

SWARTZ, A. M., S. J. STRATH, D. R. BASSETT, JR., W. L. O’BRIEN, G. A. KING, and B. E. AINSWORTH. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med. Sci. Sports Exerc., Vol. 32, No. 9, Suppl., pp. S450–S456, 2000.

Purpose: This study was designed to establish prediction models that relate hip and wrist accelerometer data to energy expenditure (EE) in field and laboratory settings. We also sought to determine whether the addition of a wrist accelerometer would significantly improve the prediction of EE (METs), compared with a model that used a hip accelerometer alone.

Methods: Seventy participants completed one to six activities within the categories of yardwork, housework, family care, occupation, recreation, and conditioning, for a total of 5 to12 participants tested per activity. EE was measured using the Cosmed K4b2 portable metabolic system. Simultaneously, two Computer Science and Applications, Inc. (CSA) accelerometers (model 7164), one worn on the wrist and one worn on the hip, recorded body movement. Correlations between EE measured by the Cosmed and the counts recorded by the CSA accelerometers were calculated, and regression equations were developed to predict EE from the CSA data.

Results: The wrist, hip, and combined hip and wrist regression equations accounted for 3.3%, 31.7%, and 34.3% of the variation in EE, respectively. The addition of the wrist accelerometer data to the hip accelerometer data to form a bivariate regression equation, although statistically significant (P = 0.002), resulted in only a minor improvement in prediction of EE. Cut points for 3 METs (574 hip counts), 6 METs (4945 hip counts), and 9 METs (9317 hip counts) were also established.

Conclusion: The small amount of additional accuracy gained from the wrist accelerometer is offset by the extra time required to analyze the data and the cost of the accelerometer.

The estimation of energy expenditure (EE) is of interest in epidemiologic research. Many epidemiologic studies have relied on the use of self-report data to arrive at an estimate of EE. However, the use of self-report data has inherent limitations and sources of error, such as recall bias (7). Consequently, investigators continue to seek improved methods of estimating EE in epidemiologic studies.

The small size, ease of use, and objectivity of accelerometers make them a promising tool to assess EE. The Computer Science and Applications, Inc. (CSA; Shalimar, FL) accelerometer (model 7164) is a lightweight (42 g) and small (5.08 × 4.06 × 1.52 cm) lithium battery-powered accelerometer designed to recognize and record acceleration and deceleration of human movement (4). This uniaxial accelerometer records accelerations of magnitudes ranging from 0.05 to 2 G and frequencies of 0.25 to 2.5 Hz, thereby filtering out movements not made by the subject, such as vibrations. All acceleration data are stored in memory according to the user-specified time interval (epoch), and the count data in each epoch represents the intensity of the activity performed. The internal real-time clock of the CSA allows data to be analyzed over intervals as short as 1 s. In addition, the CSA has the ability to store 22 consecutive days of data at 60-s intervals. A complete technical description of CSA model 7164 accelerometer has been published elsewhere (15).

The CSA accelerometer has been shown to be a valid tool in assessing EE in college-aged men and women walking and running on a treadmill (9) and middle-aged adults walking outdoors (17). In addition, the CSA accelerometer has shown reasonable agreement with heart rate in assessing physical activity of children in both laboratory (5,14) and field settings (4,6).

Regression equations have been developed to predict the metabolic cost of physical activities from CSA counts. One such equation was developed to predict the metabolic cost of walking and jogging on a flat surface from CSA model 7164 hip counts (2). Other regression equations were developed to predict the energy cost of walking and jogging based on CSA model 5032 counts from the wrist, hip, and ankle (9). Furthermore, a regression equation has been developed to estimate the cost of moderate intensity lifestyle activities including walking, golfing, washing windows, dusting, vacuuming, lawn mowing, and planting shrubs from CSA hip counts (3). However, tasks involving upper body movement such as ironing, washing dishes, and raking leaves may require a gross EE of 2–4 METs (1 MET = 3.5 mL O2·kg1·min1), even though the hip accelerometer may detect almost no movement. Consequently, an accelerometer worn on the wrist may be able to account for the EE associated with upper body movement involved in these types of tasks.

The purpose of this study was to establish a prediction model that relates CSA counts to EE using a combination of data from two CSA accelerometers, one worn on the wrist and one worn on the hip, in field and laboratory settings. An additional goal of this study was to determine whether the addition of an accelerometer worn on the wrist would improve the accuracy of estimating EE compared with a single accelerometer worn on the hip.

Back to Top | Article Outline

METHODS

Participants.

Participants were qualified to enroll in this study if they were between the ages of 19 and 74 yr, were apparently healthy, and were able to complete the assigned tasks. Eighty-one participants volunteered for this study, of which 11 were excluded from analysis owing to electronic malfunctioning of the CSA accelerometer. Therefore, 70 participants (16% African American, 1% Hispanic, 3% Asian, and 80% Caucasian), including 31 apparently healthy men (ages 41 ± 17 yr, mean ± SD) and 39 apparently healthy women (ages 42 ± 14 yr, mean ± SD), completed one to six activities. All participants were recruited from within the university and surrounding community through public postings. Each participant was informed of potential risks and benefits and signed an informed consent form approved by the University of Tennessee Institutional Review Board. Participants also completed the physical activity readiness questionnaire (PAR-Q) (13). Participants who answered yes to any of the PAR-Q questions or who were not physically able to complete the tasks were excluded from the study.

Before testing, height and weight (one layer of clothes, no shoes) were measured via a stadiometer and a standard physician’s scale, respectively. The physical characteristics of the participants included in this study are listed in Table 1.

Table 1
Table 1
Image Tools
Back to Top | Article Outline
Procedures.

Each participant performed one to six activities within one or more categories for a total of 5–12 participants tested per activity. The activities included:

• Yardwork: mowing the lawn (manual and power mowers); raking; trimming (power trimmer or “weed-eater”); gardening (pulling weeds, planting flowers).

• Occupation: walking at 67 m·min1 and carrying items weighing 6.8 kg; walking at 93.8 m·min1 and carrying items weighing 6.8 kg; loading and unloading boxes weighing 6.8 kg.

• Housework: vacuuming; sweeping and mopping; laundry; ironing; washing dishes; cooking; light cleaning (dusting, general picking up); grocery shopping with a cart.

• Family care: feeding and grooming animals; caring for small children; playing with children in the yard; playing with animals in the yard.

• Conditioning: stretching; light calisthenics; slow walking (average speed 78 m·min1); brisk walking (average speed 100 m·min1).

• Recreation: doubles tennis; golf in a two-some or four-some (carrying clubs); golf in a two-some or four-some (pulling clubs); softball.

A more complete description of all activities is available elsewhere (12).

Each activity was performed for 15 min. Before each activity, the participant was asked to sit quietly for five min as a control period. The activities were performed in the exercise physiology laboratory (occupation, conditioning), within the university grounds (recreation), at the participant’s home (yardwork, housework, family care), and at a local golf course (golf) and tennis club (doubles tennis).

Back to Top | Article Outline
Indirect calorimetry.

Each participant wore the Cosmed K4b2 (Cosmed S.r.I, Rome, Italy), a portable indirect calorimetry system, while performing each activity and throughout the rest periods. The Cosmed K4b2 has been shown to be a valid instrument to measure oxygen consumption for a wide range of work rates on a cycle ergometer (0–250 W) (8). The portable indirect calorimetry unit was mounted on the participant via a chest harness. A flexible face mask (Hans-Rudolph, Kansas City, MO) that covered the participant’s mouth and nose was attached to a flowmeter. The face mask and adjoining flowmeter was secured to the participant via a head strap. The flowmeter is a bidirectional digital turbine and uses an opto-electric reader. A disposable gel seal (Hans-Rudolph) was placed between the face mask and the participant to provide an airtight seal to capture all expired air. The Cosmed K4b2 portable metabolic system was calibrated immediately before each test session in accordance with the manufacturer’s guidelines. The calibration procedure is specified elsewhere (1). After the calibration process was completed, participant characteristics (gender, age, height, and weight) were entered into the Cosmed K4b2 portable system.

The Cosmed K4b2 was synchronized to an external timepiece. All data from the portable Cosmed K4b2 were stored in memory and directly downloaded to a Windows-based personal computer after the test was completed. Mean V̇O2 was calculated from the last 10 min of every activity each participant performed. The mean V̇O2 values (mL·kg1·min1) derived from the Cosmed K4b2 were transformed into gross METs for each activity by dividing by 3.5. One kilogram was added to measured body weight for each participant to compensate for the added weight of the Cosmed unit and accelerometers worn by the individual.

Back to Top | Article Outline
Motion sensors.

Calibration of the CSA accelerometers took place at the beginning, midpoint, and end of the study. The two CSA accelerometers were found to produce a response that met the manufacturer’s standards (within ± 5% of the reference value) both before and after the study. The midpoint calibration was also satisfactory for the CSA accelerometer worn on the hip. However, the midpoint calibration revealed a broken beam, or sensory unit, within the CSA accelerometer worn on the wrist. The broken beam resulted in lower count values than should have been recorded (66.7% of the reference value). Consequently, the malfunctioning CSA resulted in the exclusion of 11 participants from the data analysis.

Each participant wore two CSA accelerometers (model 7164, Shalimar, FL) while performing the activities. One CSA accelerometer was placed on the right anterior axillary line at waist level, and the other was placed on the dominant wrist; both were secured in nylon pouches with Velcro closures supplied by the manufacturer. The CSA accelerometers were initialized according to the manufacturer’s specifications before each activity session. The accelerometer worn on the hip was secured tightly to the waist via a belt supplied by the manufacturer. The accelerometer worn on the wrist was secured tightly by a Velcro wrist strap. Data from the CSA accelerometers were downloaded to a personal computer and subsequently imported to an Excel file, where minute-by-minute data could be compared with oxygen consumption data from the Cosmed K4b2.

The two CSA accelerometers were also synchronized to the same external timepiece to ensure that data from the Cosmed K4b2 and the accelerometers were collected over simultaneous time periods. The CSA accelerometers were set to a 60-s epoch time interval. Once the test was completed, the CSA data were downloaded according to the manufacturer’s specifications. Mean CSA counts for the hip and the wrist accelerometers were calculated for each participant from the last 10 min of every activity.

Back to Top | Article Outline
Data analysis.

SPSS 9.0 for Windows (Chicago, IL) was used to perform linear regression analyses to predict METs from 1) only CSA hip counts 2), only CSA wrist counts, and 3) CSA hip and wrist counts for all activities performed. The overall significance level was set at α = 0.05. Difference scores were calculated as the measured MET values from the Cosmed K4b2 minus the predicted MET values from the CSA. Multiple t-tests with Bonferroni’s adjustment were performed to determine whether each error score varied significantly from zero. The adjusted alpha level was set at α = 0.002 to maintain an α = 0.05 across all comparisons. Multiple paired t-tests with Bonferroni’s adjustment were performed to compare differences between predicted MET levels between the hip only and the hip and wrist regression equations for selected activities. The adjusted significance level was set at α = 0.008 to maintain an α = 0.05 across all comparisons.

Back to Top | Article Outline

RESULTS

Mean and standard deviation values for the CSA model 7164 accelerometers worn on the wrist and hip are shown in Table 2 for each activity. Brisk overground walking and treadmill walking at 93.8 m·min1 while carrying a 6.8-kg box produced the highest hip counts. The highest wrist counts were observed during raking and calisthenics.

Table 2
Table 2
Image Tools

The relationship between EE (METs) and CSA hip counts, shown in Figure 1, yielded a statistically significant correlation (r = 0.563, P < 0.001). The relationship between EE (METs) and CSA wrist counts, shown in Figure 2, also produced a statistically significant correlation (r = 0.181, P = 0.003). Accounting for the wrist in addition to the hip counts significantly improved the correlation (r = 0.586, P < 0.001) compared with the hip alone. The regression equations developed from the CSA wrist counts, CSA hip counts, and the combination of the CSA hip and wrist are displayed in Table 3. The variance in METs explained by the wrist is less than 5%, whereas the hip counts explained 31.7% of the variance. Furthermore, the hip and wrist equation accounted for only an additional 2.6% of the variance in METs compared with the hip alone.

Figure 1
Figure 1
Image Tools
Figure 2
Figure 2
Image Tools
Table 3
Table 3
Image Tools

Figure 3 illustrates the difference scores (measured METs minus CSA regression estimated METs) for the hip and the hip and wrist regression equations in each activity. The difference scores demonstrate an over- or under-estimation of the CSA regression for individual activities. Both regression equations significantly underpredicted the actual measured energy cost of mowing with a power mower (P < 0.001) and a manual mower (P = 0.001). Both regression equations significantly overpredicted the energy cost of ironing (P < 0.001), caring for children (P = 0.001), and slow walking (78 m·min1) (P = 0.001).

Figure 3
Figure 3
Image Tools

The hip and the hip and wrist regression equations provided significantly different estimates of METs for only five activities: trimming (P = 0.004), raking (P = 0.001), manual mowing (P < 0.001), calisthenics (P < 0.001), and doubles tennis (P < 0.001). However, the magnitude of the difference was quite small in each case. The regression equations gave similar estimates of METs for all other activities.

Back to Top | Article Outline

DISCUSSION

Researchers have been interested in the relationship between physical activity and health outcomes for many years. The new recommendations by the Centers for Disease Control and Prevention and the American College of Sports Medicine (11), along with the Surgeon General’s report on Physical Activity and Health (16), have spurred interest in epidemiologic research to quantify how much physical activity Americans are currently performing. Traditionally, epidemiologic studies have relied on questionnaires to quantify the amount and intensity of physical activity that participants perform (10). These methods have served epidemiology well, but they are subject to limitations (7). Surveys are subjective and usually require recall on the respondent’s part, which leads to a potential source of error (7). Therefore, the challenge remains to develop accurate, objective methods of measuring physical activity within large populations.

Accelerometers have the potential to provide accurate and objective estimates of EE in epidemiologic studies. The CSA accelerometer model 7164 can provide concurrent information on the frequency, duration, and intensity of physical activity. Many studies have developed prediction models to estimate metabolic cost in a laboratory setting using a CSA accelerometer (2,3,9). These studies have focused on one activity or a variety of activities and have constructed regression equations to estimate EE using a single accelerometer mounted on the hip or a combination of accelerometers on the hip, wrist, and ankle (2,3,9). The fundamental goals of this study were 1) to develop a prediction model that incorporates CSA counts from accelerometers worn on the hip and wrist and 2) to determine whether the addition of an accelerometer worn on the wrist, while performing common daily activities, would improve the accuracy of estimating EE (METs) compared with a prediction model based on a single accelerometer worn on the hip. Regression equations were developed from accelerometer counts and measured energy cost (METs) during a variety of activities performed in field and laboratory settings (Table 3). The equations developed from the CSA wrist, hip, and hip and wrist accelerometer counts accounted for 3.3% (P = 0.003), 31.7% (P < 0 0.001), and 34.3% (P < 0.001) of the variability in EE (METs) of the activities performed, respectively. The regression equation derived from the hip and wrist accelerometer counts explained significantly more of the variability in EE (METs) of the activities than the hip alone, although only an additional 2.6% (P = 0.002).

The results from this study differ from those of Melanson and Freedson (9), who looked at the relationship between CSA model 5032 accelerometer counts from the hip, wrist, and ankle and the measured EE for three different speeds of walking and jogging. They found that counts were significantly correlated with EE (r = 0.66–0.81) regardless of the location of the accelerometer (wrist, hip, ankle). Contrary to the results in the present study, the best single accelerometer regression equation used data from the CSA accelerometer worn on the wrist to predict EE, accounting for 86% of the variance in EE for walking and jogging. Melanson and Freedson (9) also found that the addition of CSA count data from other anatomical sites (hip, ankle) improved the prediction of EE compared with the wrist alone. A combination of hip and wrist or wrist and ankle yielded an R2 = 0.89. In the present study, the hip and wrist CSA counts predicted EE (METs) with an R2 of 0.343. The large discrepancy between the amount of variation explained by the equations developed in this study and the equations developed by Melanson and Freedson could be due to the activity modes. Melanson and Freedson (9) examined treadmill locomotion (two different walking speeds and one jogging speed) in a laboratory setting, whereas the equation developed in this study was based on a wide variety of tasks, both indoors and outdoors, in field and laboratory settings.

Hendelman et al. (3) developed a regression equation for a variety of activities, including walking at four speeds, golf (pulling cart), washing windows, dusting, vacuuming, lawn mowing, and planting shrubs. They showed a moderate to strong correlation between hip CSA model 7164 accelerometer counts and the metabolic cost of walking (r = 0.77), accounting for 58.9% of the variance in EE. However, the correlation was reduced when all activities were used to develop the regression equation (r = 0.59), accounting for 35.2% of the variance in EE, a finding similar to our observations.

The hip and wrist regression equation developed in this study accounted for 34.3% of the variability in the metabolic cost of the activities, a 2.6% improvement over the hip-alone regression. Although 2.6% more of the variability could be explained with the addition of another accelerometer, one needs to consider whether the increased time, cost, and effort required are worth the small improvement in accuracy. Figure 3 shows a graph of difference scores computed as the measured METs minus CSA regression estimated METs for both regression equations (hip, hip and wrist) developed in this study. We recognize the limitations of using the same data from which the regression equations were derived to evaluate how well the regression equation estimates EE. However, the purpose of Figure 3 was to graphically represent the marginal benefit of the hip and wrist equation over the hip equation. In addition, Figure 3 demonstrates which activities were over- and under-estimated in our study. The difference scores for most activities were similar for each of the two regression equations, highlighting the quantitatively small advantage of the hip and wrist combination regression equation over the hip alone. Generally, for those activities in which external work is involved (carrying, lifting, and pushing), both regression equations (hip, hip and wrist) tended to underpredict the metabolic cost of the activities. However, the hip and the hip and wrist regression equations did provide significantly different estimates of METs for activities involving upper body movement such as trimming, raking, manual mowing, calisthenics, and doubles tennis.

Further examination of the data allowed for calculation of count values, or “cut points,” which corresponded to 3, 6, and 9 METs (Table 4, Fig. 1). The “cut point” method of determining light (1.1–3 METs), moderate (3–5.9 METs), hard (6–8.9 METs), and very hard (≥9 METs) activities from actual counts could be useful to researchers interested in quantifying the amount of time spent at various intensities (2). Considering the quantitatively minor advantage of the hip and wrist regression equation, the hip-only regression equation was used to determine the “cut points.” Hendelman et al. (3) also determined “cut points” for 3, 6, and 9 METs based on the regression equation for all activities using hip accelerometer counts. As seen in Table 4, their values were very different from those developed in this study. For example, in the moderate intensity category of 3–6 METs, Hendelman et al. (3) reported a range of 190.7–7525.7 counts, whereas in this study, the range was 574-4945 counts. Some of the discrepancy is attributable to the type and number of activities performed. In the study of Hendelman et al (3)., 4 of the 10 activities examined consisted of walking. In the present study, only 2 of the 28 activities consisted of walking. Because walking yields higher counts for a given level of EE than other activities, this had an impact on the regression equations developed in the two studies.

Table 4
Table 4
Image Tools

In the past, regression equations were developed for walking or jogging (2,3,9). Although these regression equations are very accurate for these specific activities (r = 0.80–0.90), they tend to underestimate the energy cost of most other activities (1,3,18). The regression analyses in this paper (hip, hip and wrist) were based on a wide variety of activities. Therefore, although they cannot be expected to estimate the EE of a specific activity (e.g., walking) as accurately, the regression equations based on all activities have a broader application.

The discrepancies between the present study and that of Hendelman et al. (3) show the difficulty of developing consistent cut points and regression equations to predict the metabolic cost of all activities. A number of things must be considered when comparing the counts per minute for activities in the Hendelmen et al. (3) paper and the counts per minute developed in this paper. First, the activities measured need to be considered.

As seen in Figure 4, slow walking (78–79 m·min1), brisk walking (95–100 m·min1), golf (pulling a cart), dusting/light cleaning, vacuuming, and mowing the lawn with a power mower were the only activities performed in both studies (3). The CSA hip counts and measured MET values for the activities that are common to both studies show a similar pattern. The CSA scores were generally within 1000 counts per minute of each other, and the EE values were within 0.8 METs. Possible reasons for the differences in counts per min and measured MET values could be attributed to the pace at which activities were performed, or the way in which these activities were carried out (e.g., how much walking was done during vacuuming, power mowing, and golf). For instance, in the present study, golf was played in either a two-some or four-some, whereas in the paper of Hendelman et al. (3), golf was played individually. Furthermore, the terrain of the golf course or lawn, and the weight of the golf clubs, lawn mower, or vacuum can play a role in the measured MET value of each activity. Therefore, the discrepancies in counts per minute and METs for similar activities are small and can be accounted for by external variability. Additional studies are needed to determine the validity of the regression equations and cut points observed in both studies.

Figure 4
Figure 4
Image Tools

There are limitations to the use of accelerometers for measuring EE. Motion sensors are unable to distinguish between different types of walking surfaces and changes in percent grade (3,10) and are not able to detect when a person is carrying a load, pushing an object, or ascending stairs. In addition, motion sensors cannot accurately track EE while swimming, stationary cycling, rowing, or resistance training (10).

In conclusion, it was hypothesized that an accelerometer worn on the wrist would increase the accuracy of predicting the EE of various activities compared with an accelerometer worn only on the hip. The combination of hip and wrist accelerometers did prove to be more accurate at predicting EE; however, it was only a minor improvement. The small amount of additional accuracy gained from the wrist accelerometer is offset by the extra time required to analyze the data and the cost of the accelerometer.

This work was supported in part by grants from the International Life Sciences Institute Center for Health Promotion (ILSI CHP) and the American Heart Association (AHA) Southeast Research Consortium. The opinions expressed herein are those of the authors and do not necessarily represent the views of the ILSI CHP or the AHA Southeast Research Consortium. The use of trade names and commercial sources in this document is for purposes of identification only and does not imply endorsement.

The authors would like to thank Dr. Edward Howley for his guidance and support throughout this project and Cary Springer for assistance and direction in performing the statistical analysis.

Back to Top | Article Outline

REFERENCES

1. Bassett, D. R. Jr., B. E. Ainsworth, A. M. Swartz, S. J. Strath, W. L. O’Brien,and G. A. King. Validity of four movement sensors in measuring moderate intensity physical activity in field settings. Med. Sci. Sports Exerc. 32: (Suppl.) S471–S480, 2000.

2. Freedson, P. S., E. Melanson, and J. Sirard. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 30: 777–781, 1998.

3. Hendelman, D., K. Miller, C. Bagget, E. Debold, and P. Freedson. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med. Sci. Sports Exerc. 32: (Suppl.) S442–S449, 2000.

4. Janz, K. F. Validation of the CSA accelerometer for assessing children’s physical activity. Med. Sci. Sports Exerc. 26: 369–375, 1994.

5. Janz, K. F., S. L. Cassady, R. N. Barr, and J. M. Kelly. Monitoring exercise in children and adolescents with cystic fibrosis: validation of the CSA monitor. Cardiopul. Phys. Ther. 6: 3–8, 1995.

6. Janz, K. F., J. Witt, and L. T. Mahoney. The stability of children’s physical activity as measured by accelerometery and self-report. Med. Sci. Sports Exerc. 27: 1326–1332, 1995.

7. Laporte, R. E., H. J. Montoye, and C. J. Casperson. Assessment of physical activity in epidemiologic research: problems and prospects. Public Health Rep. 100: 131–146, 1985.

8. McLaughlin, J. E., G. A. King, E. T. Howley, D. R. Bassett, Jr., and B. E. Ainsworth. Validation of the Cosmed K4b2 portable metabolic system. Int. J. Sports Med. 20: 304–308, 1999.

9. Melanson, E., and P. S. Freedson. Validity of the Computer Science and Applications, Inc. activity monitor. Med. Sci. Sports Exerc. 27: 934–940, 1995.

10. Montoye, H. J. Measuring Physical Activity and Energy Expenditure. Champaign, IL: Human Kinetics Publishers, 1995, pp. 72–96.

11. Pate, R. R., M. Pratt, S. N. Blair, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273: 402–407, 1995.

12. Strath, S. J., A. M. Swartz, D. R. Bassett, Jr., W. L. O’Brien, G. A. King, and B. E. Ainsworth. Evaluation of heart rate as a method for assessing moderate intensity physical activity. Med. Sci. Sports Exerc. 32: (Suppl.) S465–S470, 2000.

13. Thomas, S., J. Reading, and R. J. Shepard. Revision of the physical activity readiness questionnaire (PAR-Q). Can. J. Sports Sci. 17: 338, 1992.

14. Trost, S. G., D. S. Ward, S. M. Moorehead, P. D. Watson, W. Riner, and J. R. Burke. Validity of the computer science and applications (CSA) activity monitor in children. Med. Sci. Sports Exerc. 30: 629–633, 1998.

15. Tryon, W. W., and R. Williams. Fully proportional actigraphy: a new instrument. Behav. Res. Meth. Instr. Comp. 28: 392–403, 1996.

16. U.S. Department of Health and Human Services. Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, 1996, p. 44.

17. Washburn, R. A., and A. G. Copay. The Computer Science and Applications, Inc. (CSA) accelerometer as a measure of energy expenditure in outdoor walking. Med. Sci. Sports Exerc. 30: S2, 1997.

18. Welk, G. J., S. N. Blair, K. Wood, S. Jones, and R. Thompson. A comparative evaluation of three accelerometry-based physical activity monitors. Med. Sci. Sports Exerc. 32: (Suppl.) S489–S497, 2000.

Cited By:

This article has been cited 122 time(s).

Journal of Science and Medicine in Sport
Validation and responsiveness of the AQuAA for measuring physical activity in overweight and obese pregnant women
Oostdam, N; van Mechelen, W; van Poppel, M
Journal of Science and Medicine in Sport, 16(5): 412-416.
10.1016/j.jsams.2012.09.001
CrossRef
Deutsche Zeitschrift Fur Sportmedizin
Accelerometry and Energy Expenditure in Obese Adults and Normal Weight Controls
Meyer, K; Pereiro, N; Encinas, R; Bieber, G; Laederach, K; Limacher, A
Deutsche Zeitschrift Fur Sportmedizin, 64(5): 120-125.
10.5960/dzsm.2012.070
CrossRef
Journal of Electromyography and Kinesiology
Validation of a portable EMG device to assess muscle activity during free-living situations
Walters, TJ; Kaschinske, KA; Strath, SJ; Swartz, AM; Keenan, KG
Journal of Electromyography and Kinesiology, 23(5): 1012-1019.
10.1016/j.jelekin.2013.06.004
CrossRef
Journal of Medical Internet Research
Comparison of Physical Activity Measures Using Mobile Phone-Based CalFit and Actigraph
Donaire-Gonzalez, D; de Nazelle, A; Seto, E; Mendez, M; Nieuwenhuijsen, MJ; Jerrett, M
Journal of Medical Internet Research, 15(6): -.
10.2196/jmir.2470
CrossRef
Applied Ergonomics
Characterizing free-living light exposure using a wrist-worn light monitor
Heil, DP; Mathis, SR
Applied Ergonomics, 33(4): 357-363.
PII S0003-6870(02)00007-8
CrossRef
Journal of Sports Science and Medicine
Relationship between the MTI accelerometer (ActiGraph) counts and running speed during continuous and intermittent exercise
Guinhouya, CB; Hubert, H; Dupont, G; Durocher, A
Journal of Sports Science and Medicine, 4(4): 534-542.

Journal of Aging and Physical Activity
Comparison of two methods of measuring physical activity South African older adults
Kolbe-Alexander, TL; Lambert, EV; Harkins, JB; Ekelund, U
Journal of Aging and Physical Activity, 14(1): 98-114.

2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-16
Activity energy expenditure assessment system based on activity classification using multi-site triaxial accelerometers
Kim, D; Kim, HC
2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-16, (): 2285-2287.

Journals of Gerontology Series A-Biological Sciences and Medical Sciences
Ecological Measurement of Fatigue and Fatigability in Older Adults With Osteoarthritis
Murphy, SL; Smith, DM
Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 65(2): 184-189.
10.1093/gerona/glp137
CrossRef
International Journal of Behavioral Nutrition and Physical Activity
Validity and repeatability of the EPIC physical activity questionnaire: a validation study using accelerometers as an objective measure
Cust, AE; Smith, BJ; Chau, J; van der Ploeg, HP; Friedenreich, CM; Armstrong, BK; Bauman, A
International Journal of Behavioral Nutrition and Physical Activity, 5(): -.
ARTN 33
CrossRef
Ergonomics
Can accelerometry be used to discriminate levels of activity?
Hendrick, P; Bell, ML; Bagge, PJ; Milosavljevic, S
Ergonomics, 52(8): 1019-1025.
10.1080/00140130902846464
CrossRef
Research Quarterly for Exercise and Sport
Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity
Heil, DP; Bennett, GG; Bond, KS; Webster, MD; Wolin, KY
Research Quarterly for Exercise and Sport, 80(3): 424-433.

Physical Therapy
Using activity monitors to measure physical activity in free-living conditions
Berlin, JE; Storti, KL; Brach, JS
Physical Therapy, 86(8): 1137-1145.

Pediatric Exercise Science
Monitoring of physical activity in young children: How much is enough?
Penpraze, V; Reilly, JJ; MacLean, CM; Montgomery, C; Kelly, LA; Paton, JY; Aitchison, T; Grant, S
Pediatric Exercise Science, 18(4): 483-491.

Pediatric Exercise Science
Comparative validity assessment of five activity monitors: Does being a child matter?
Stone, MR; Esliger, DW; Tremblay, MS
Pediatric Exercise Science, 19(3): 291-309.

Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
Comparison of Lifecorder EX and ActiGraph accelerometers under free-living conditions
McClain, JJ; Craig, CL; Sisson, SB; Tudor-Locke, C
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 32(4): 753-761.
10.1139/H07-060
CrossRef
European Journal of Clinical Nutrition
Accuracy of the Actiheart for the assessment of energy expenditure in adults
Crouter, SE; Churilla, JR; Bassett, DR
European Journal of Clinical Nutrition, 62(6): 704-711.
10.1038/sj.ejcn.1602766
CrossRef
American Journal of Epidemiology
The effect of social desirability and social approval on self-reports of physical activity
Adams, SA; Matthews, CE; Ebbeling, CB; Moore, CG; Cunningham, JE; Fulton, J; Hebert, JR
American Journal of Epidemiology, 161(4): 389-398.
10.1093/aje/kwi054
CrossRef
European Respiratory Journal
Quantifying physical activity in daily life with questionnaires and motion sensors in COPD
Pitta, F; Troosters, T; Probst, VS; Spruit, MA; Decramer, M; Gosselink, R
European Respiratory Journal, 27(5): 1040-1055.
10.1183/09031936.06.00064105
CrossRef
American Journal of Epidemiology
The role of measurement error in estimating levels of physical activity
Ferrari, P; Friedenreich, C; Matthews, CE
American Journal of Epidemiology, 166(7): 832-840.
10.1093/aje/kwm148
CrossRef
American Journal of Occupational Therapy
Measuring activity pacing in women with lower-extremity osteoarthritis: A pilot study
Murphy, SL; Smith, DM; Alexander, NB
American Journal of Occupational Therapy, 62(3): 329-334.

2008 2Nd International Conference on Pervasive Computing Technologies for Healthcare
A Concept for Personal Wellness Management Based on Activity Monitoring
Mattila, E; Korhonen, E; Merilahti, J; Nummela, A; Myllymaki, M; Rusko, H
2008 2Nd International Conference on Pervasive Computing Technologies for Healthcare, (): 31-35.

Applied Ergonomics
Estimating energy expenditure in wildland fire fighters using a physical activity monitor
Heil, DP
Applied Ergonomics, 33(5): 405-413.
PII S0003-6870(02)00042-X
CrossRef
Obesity Research
Is the ArteACC index a valid indicator of free-living physical activity in adolescents?
Ekelund, U; Aman, J; Westerterp, K
Obesity Research, 11(6): 793-801.

Physiological Measurement
Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement
Mathie, MJ; Coster, ACF; Lovell, NH; Celler, BG
Physiological Measurement, 25(2): R1-R20.
10.1088/0967-3334/25/2/R01
CrossRef
Journal of Applied Physiology
Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth
Choi, L; Chen, KY; Acra, SA; Buchowski, MS
Journal of Applied Physiology, 108(2): 314-327.
10.1152/japplphysiol.00374.2009
CrossRef
Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Proceedings
A Pilot Study on BSN-based Ubiquitous Energy Expenditure Monitoring
Lin, SJ; Wang, L; Huang, BY; Zhang, YT; Wu, XM; Zhao, JP
Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Proceedings, (): 49-52.
10.1109/P3644.55
CrossRef
International Journal of Behavioral Nutrition and Physical Activity
Measuring physical activity among pregnant women using a structured one-week recall questionnaire: evidence for validity and reliability
Evenson, KR; Wen, F
International Journal of Behavioral Nutrition and Physical Activity, 7(): -.
ARTN 21
CrossRef
International Journal of Obesity
Daily physical activity assessment: what is the importance of upper limb movements vs whole body movements?
Kumahara, H; Tanaka, H; Schutz, Y
International Journal of Obesity, 28(9): 1105-1110.
10.1038/sj.ijo.0802712
CrossRef
Military Medicine
Metabolic rate prediction by massless actigraphy for outdoor activities
Berlin, S; Shalit, L; Yarom, Y; Moran, DS
Military Medicine, 172(8): 882-887.

Scandinavian Journal of Medicine & Science in Sports
Profile of physical activity behaviors among Swedish women aged 56-75 years
Orsini, N; Bellocco, R; Bottai, M; Hagstromer, M; Sjostrom, M; Pagano, M; Wolk, A
Scandinavian Journal of Medicine & Science in Sports, 18(1): 95-101.
10.1111/j.1600-0838.2006.00624.x
CrossRef
Journal of Applied Physiology
An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
Staudenmayer, J; Pober, D; Crouter, S; Bassett, D; Freedson, P
Journal of Applied Physiology, 107(4): 1300-1307.
10.1152/japplphysiol.00465.2009
CrossRef
Obesity Research
Validation and calibration of physical activity monitors in children
Puyau, MR; Adolph, AL; Vohra, FA; Butte, NF
Obesity Research, 10(3): 150-157.

European Journal of Applied Physiology
Validity of uniaxial accelerometry during activities of daily living in children
Eisenmann, JC; Strath, SJ; Shadrick, D; Rigsby, P; Hirsch, N; Jacobson, L
European Journal of Applied Physiology, 91(): 259-263.
10.1007/s00421-003-0983-3
CrossRef
European Journal of Applied Physiology
Estimating energy expenditure using accelerometers
Crouter, SE; Churilla, JR; Bassett, DR
European Journal of Applied Physiology, 98(6): 601-612.
10.1007/s00421-006-0307-5
CrossRef
Journal of Rehabilitation Research and Development
Preliminary evaluation of reliability and criterion validity of Actiwatch-Score
Gironda, RJ; Lloyd, J; Clark, ME; Walker, RL
Journal of Rehabilitation Research and Development, 44(2): 223-230.
10.1682/JRRD.2006.06.0058
CrossRef
European Journal of Sport Science
Measuring physical activity in field studies: Comparison of a questionnaire, 24-hour recall and an accelerometer
Kwak, L; Kremers, SPJ; Brug, J; Van Baak, MA
European Journal of Sport Science, 7(4): 193-201.
10.1080/17461390701674088
CrossRef
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme
Physical activity and inactivity profiling: the next generation
Esliger, DW; Tremblay, MS
Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 32(): S195-S207.
10.1139/H07-107
CrossRef
Obesity
Predicting Physical Activity Energy Expenditure Using Accelerometry in Adults From Sub-Sahara Africa
Assah, FK; Ekelund, U; Brage, S; Corder, K; Wright, A; Mbanya, JC; Wareham, NJ
Obesity, 17(8): 1588-1595.
10.1038/oby.2009.39
CrossRef
Medicine and Science in Sports and Exercise
Field evaluation of energy expenditure in women using Tritrac accelerometers
Campbell, KL; Crocker, PRE; McKenzie, DC
Medicine and Science in Sports and Exercise, 34(): 1667-1674.
10.1249/01.MSS.0000035995.09097.2d
CrossRef
Journal of Sports Medicine and Physical Fitness
Comparative analysis of the Cosmed Quark b(2) and K4b(2) gas analysis systems during submaximal exercise
Eisenmann, JC; Brisko, N; Shadrick, D; Welsh, S
Journal of Sports Medicine and Physical Fitness, 43(2): 150-155.

Journal of Sports Science and Medicine
Validity and reliability of physical activity measures in Greek high school age children
Argiropoulou, EC; Michalopoulou, M; Aggeloussis, N; Avgerinos, A
Journal of Sports Science and Medicine, 3(3): 147-159.

Journal of Sports Sciences
Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints
Jago, R; Zakeri, I; Baranowski, T; Watson, K
Journal of Sports Sciences, 25(8): 937-944.
10.1080/02640410600908027
CrossRef
International Journal of Sports Medicine
Ability of different physical activity monitors to detect movement during treadmill walking
Leenders, NYJM; Nelson, TE; Sherman, WM
International Journal of Sports Medicine, 24(1): 43-50.

European Journal of Clinical Nutrition
Significant changes in physical activity among pregnant women in the UK as assessed by accelerometry and self-reported activity
Rousham, EK; Clarke, PE; Gross, H
European Journal of Clinical Nutrition, 60(3): 393-400.
10.1038/sj.ejcn.1602329
CrossRef
Journal of Applied Physiology
Comparing the performance of three generations of ActiGraph accelerometers
Rothney, MP; Apker, GA; Song, YN; Chen, KY
Journal of Applied Physiology, 105(4): 1091-1097.
10.1152/japplphysiol.90641.2008
CrossRef
Bmc Musculoskeletal Disorders
Reliability and validity of the short questionnaire to assess health-enhancing physical activity (SQUASH) in patients after total hip arthroplasty
Wagenmakers, R; van den Akker-Scheek, I; Groothoff, JW; Zijlstra, W; Bulstra, SK; Kootstra, JWJ; Wendel-Vos, GCW; van Raaij, JJAM; Stevens, M
Bmc Musculoskeletal Disorders, 9(): -.
ARTN 141
CrossRef
International Journal of Behavioral Nutrition and Physical Activity
Development of a four-item physical activity index from information about subsistence living in rural African women: a descriptive, cross-sectional investigation
Cook, I; Alberts, M; Lambert, EV
International Journal of Behavioral Nutrition and Physical Activity, 6(): -.
ARTN 75
CrossRef
Journal of Science and Medicine in Sport
Accuracy and reliabillity of a Cosmed K4b(2) portable gas analysis system
Duffield, R; Dawson, B; Pinnington, H; Wong, P
Journal of Science and Medicine in Sport, 7(1): 11-22.

Research Quarterly for Exercise and Sport
Assessment of Differing Definitions of Accelerometer Nonwear Time
Evenson, KR; Terry, JW
Research Quarterly for Exercise and Sport, 80(2): 355-362.

International Journal of Behavioral Nutrition and Physical Activity
Environmental supportiveness for physical activity in English schoolchildren: a study using Global Positioning Systems
Jones, AP; Coombes, EG; Griffin, SJ; van Sluijs, EMF
International Journal of Behavioral Nutrition and Physical Activity, 6(): -.
ARTN 42
CrossRef
Medicine and Science in Sports and Exercise
Assessment of physical activity by telephone interview versus objective monitoring
Strath, SJ; Bassett, DR; Ham, SA; Swartz, AM
Medicine and Science in Sports and Exercise, 35(): 2112-2118.
10.1249/01.MSS.0000099091.38917.76
CrossRef
Obesity Research
Ability of the Actiwatch accelerometer to predict free-living energy expenditure in young children
Lopez-Alarcon, M; Merrifield, J; Fields, DA; Hilario-Hailey, T; Franklin, FA; Shewchuk, RM; Oster, RA; Gower, BA
Obesity Research, 12(): 1859-1865.

American Journal of Preventive Medicine
Physical activity assessment - Validation of a clinical assessment tool
Meriwether, RA; McMahon, PM; Islam, N; Steinmann, WC
American Journal of Preventive Medicine, 31(6): 484-491.
10.1016/j.amepre.2006.08.021
CrossRef
Pediatric Exercise Science
Accelerometer assessment of physical activity in children: An update
Rowlands, AV
Pediatric Exercise Science, 19(3): 252-266.

Bmc Medical Research Methodology
Unit-specific calibration of Actigraph accelerometers in a mechanical setup - Is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field
Moeller, NC; Korsholm, L; Kristensen, PL; Andersen, LB; Wedderkopp, N; Froberg, K
Bmc Medical Research Methodology, 8(): -.
ARTN 19
CrossRef
Journal of Applied Physiology
A novel method for using accelerometer data to predict energy expenditure
Crouter, SE; Clowers, KG; Bassett, DR
Journal of Applied Physiology, 100(4): 1324-1331.
10.1152/jappalphysiol.00818.2005
CrossRef
Research Quarterly for Exercise and Sport
Meeting physical activity recommendation or not: Depends on the method
Gao, Y; Zhu, WM
Research Quarterly for Exercise and Sport, 79(1): AXIX-AXXI.

Arthritis & Rheumatism-Arthritis Care & Research
The impact of momentary pain and fatigue on physical activity in women with osteoarthritis
Murphy, SL; Smith, DM; Clauw, DJ; Alexander, NB
Arthritis & Rheumatism-Arthritis Care & Research, 59(6): 849-856.
10.1002/art.23710
CrossRef
Osteoporosis International
Muscle power is related to tibial bone strength in older women
Ashe, MC; Liu-Ambrose, TYL; Cooper, DML; Khan, KM; McKay, HA
Osteoporosis International, 19(): 1725-1732.
10.1007/s00198-008-0655-6
CrossRef
Journal of Sports Sciences
Equivalence of accelerometer data for walking and running: Treadmill versus on land
Vanhelst, J; Zunquin, G; Theunynck, D; Mikulovic, J; Bui-Xuan, G; Beghin, L
Journal of Sports Sciences, 27(7): 669-675.
10.1080/02640410802680580
CrossRef
Adapted Physical Activity Quarterly
Determining Daily Physical Activity Levels of Youth With Developmental Disabilities: Days of Monitoring Required?
Kim, SY; Yun, J
Adapted Physical Activity Quarterly, 26(3): 220-235.

Journal of Aging and Physical Activity
Estimating Absolute and Relative Physical Activity Intensity Across Age via Accelerometry in Adults
Miller, NE; Strath, SJ; Swartz, AM; Cashin, SE
Journal of Aging and Physical Activity, 18(2): 158-170.

Journal of Aging and Physical Activity
Accelerometer Assessment of Physical Activity in Active, Healthy Older Adults
Copeland, JL; Esliger, DW
Journal of Aging and Physical Activity, 17(1): 17-30.

Medicine and Science in Sports and Exercise
Principles of design and analyses for the calibration of accelerometry-based activity monitors
Welk, GJ
Medicine and Science in Sports and Exercise, 37(): S501-S511.
10.1249/01.mss.0000185660.38335.de
CrossRef
Aviation Space and Environmental Medicine
Cognition during sustained operations: Comparison of a laboratory simulation to field studies
Lieberman, HR; Niro, P; Tharion, WJ; Nindl, BC; Castellani, JW; Montain, SJ
Aviation Space and Environmental Medicine, 77(9): 929-935.

International Journal of Sports Medicine
Comparison of MTI accelerometer cut-points for predicting time spent in physical activity
Strath, SJ; Bassett, JR; Swartz, AM
International Journal of Sports Medicine, 24(4): 298-303.

Journal of Applied Physiology
An artificial neural network model of energy expenditure using. nonintegrated acceleration signals
Rothney, MP; Neumann, M; Beziat, A; Chen, KY
Journal of Applied Physiology, 103(4): 1419-1427.
10.1152/japplphysiol.00429.2007
CrossRef
Medicine and Science in Sports and Exercise
The technology of accelerometry-based activity monitors: Current and future
Chen, KY; Bassett, DR
Medicine and Science in Sports and Exercise, 37(): S490-S500.
10.1249/01.mss.0000185571.49104.82
CrossRef
Research Quarterly for Exercise and Sport
Predicting activity energy expenditure using the Actical (R) activity monitor
Heil, DP
Research Quarterly for Exercise and Sport, 77(1): 64-80.

American Journal of Epidemiology
Reliability and validity of the past year total physical activity questionnaire
Friedenreich, CM; Courneya, KS; Neilson, HK; Matthews, CE; Willis, G; Irwin, M; Troiano, R; Ballard-Barbash, R
American Journal of Epidemiology, 163(): 959-970.
10.1093/aje/kwj112
CrossRef
Journal of Womens Health
Linking clinical care to community resources for cardiovascular disease prevention: The North Carolina enhanced WISEWOMAN project
Jilcott, SB; Keyserling, TC; Samuel-Hodge, CD; Rosamond, W; Garcia, B; Will, JC; Farris, RP; Ammerman, AS
Journal of Womens Health, 15(5): 569-583.

Ergonomics
Estimation of energy expenditure in a work environment: Comparison of accelerometry and oxygen consumption/heart rate regression
Bouchard, DR; Trudeau, F
Ergonomics, 51(5): 663-670.
10.1080/00140130701780484
CrossRef
Medicine and Science in Sports and Exercise
Amount and bouts of physical activity in a sample of African-American women
Whitt, M; Kumanyika, S; Bellamy, S
Medicine and Science in Sports and Exercise, 35(): 1887-1893.
10.1249/01.MSS.0000093618.60631.C3
CrossRef
Medicine and Science in Sports and Exercise
Portable global positioning units to complement accelerometry-based physical activity monitors
Rodriguez, DA; Brown, AL; Troped, PJ
Medicine and Science in Sports and Exercise, 37(): S572-S581.
10.1249/01.mss.0000185297.73228.ce
CrossRef
Nutricion Hospitalaria
Physical activity and energy expenditure measurements using accelerometers in older adults
Garatachea, N; Luque, GT; Gallego, JG
Nutricion Hospitalaria, 25(2): 224-230.
10.3305/nh.2010.25.2.4439
CrossRef
Preventive Medicine
Randomized trial of a clinic-based, community-supported, lifestyle intervention to improve physical activity and diet: The North Carolina enhanced WISEWOMAN project
Keyserling, TC; Hodge, CDS; Jilcott, SB; Johnston, LF; Garcia, BA; Gizlice, Z; Gross, MD; Savinon, CE; Bangdiwala, SI; Will, JC; Farris, RP; Trost, S; Ammerman, AS
Preventive Medicine, 46(6): 499-510.
10.1016/j.ypmed.2008.02.011
CrossRef
Obesity
Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers
Rothney, MP; Schaefer, EV; Neumann, MM; Choi, L; Chen, KY
Obesity, 16(8): 1946-1952.
10.1038/oby.2008.279
CrossRef
International Journal of Social Psychiatry
Predicting Transitory Mood From Physical Activity Level Among People With Severe Mental Illness in Two Cultures
Mccormick, BP; Frey, G; Lee, CT; Chun, S; Sibthorp, J; Gajic, T; Stamatovic-Gajic, B; Maksimovich, M
International Journal of Social Psychiatry, 54(6): 527-538.
10.1177/0020764008091423
CrossRef
Journal of Medical Internet Research
Effectiveness of Active-Online, an Individually Tailored Physical Activity Intervention, in a Real-Life Setting: Randomized Controlled Trial
Wanner, M; Martin-Diener, E; Braun-Fahrlander, C; Bauer, G; Martin, BW
Journal of Medical Internet Research, 11(3): -.
ARTN e23
CrossRef
Medicine and Science in Sports and Exercise
Development and validation of a pregnancy physical activity questionnaire
Chasan-Taber, L; Schmidt, MD; Roberts, DE; Hosmer, D; Markenson, G; Freedson, PS
Medicine and Science in Sports and Exercise, 36(): 1750-1760.
10.1249/01.MSS.0000142303.49306.0D
CrossRef
Journal of the American Dietetic Association
Validation of a brief dietary assessment to guide counseling for cardiovascular disease risk reduction in an underserved population
Jilcott, SB; Keyserling, TC; Samuel-Hodge, CD; Johnston, LF; Gross, MD; Ammerman, AS
Journal of the American Dietetic Association, 107(2): 246-255.
10.1016/j.jada.2006.11.006
CrossRef
Electronics Letters
Estimation of activity energy expenditure based on activity classification using multi-site triaxial accelerometry
Kim, D; Kim, HC
Electronics Letters, 44(4): 266-267.
10.1049/el:20082139
CrossRef
European Journal of Applied Physiology
The contribution of upper limb and total body movement to adolescents' energy expenditure whilst playing Nintendo Wii
Graves, LEF; Ridgers, ND; Stratton, G
European Journal of Applied Physiology, 104(4): 617-623.
10.1007/s00421-008-0813-8
CrossRef
Journal of Aging and Physical Activity
Use of Accelerometry to Measure Physical Activity in Older Adults at Risk for Mobility Disability
Pruitt, LA; Glynn, NW; King, AC; Guralnik, JM; Aiken, EK; Miller, G; Haskell, WL
Journal of Aging and Physical Activity, 16(4): 416-434.

Medical Science Monitor
Metabolic rate monitoring and energy expenditure prediction using a novel actigraphy method
Moran, DS; Heled, Y; Gonzalez, RR
Medical Science Monitor, 10(): MT117-MT120.

Medicine and Science in Sports and Exercise
Conducting accelerometer-based activity assessments in field-based research
Trost, SG; McIver, KL; Pate, RR
Medicine and Science in Sports and Exercise, 37(): S531-S543.
10.1249/01.mss.0000185657.86065.98
CrossRef
European Journal of Ageing
Mobility assessment in older people: new possibilities and challenges
Zijlstra, W; Aminian, K
European Journal of Ageing, 4(1): 3-12.
10.1007/s10433-007-0041-9
CrossRef
Disability and Rehabilitation
Comparison of ActiGraph activity monitors in persons with multiple sclerosis and controls
Sandroff, BM; Motl, RW
Disability and Rehabilitation, 35(9): 725-731.
10.3109/09638288.2012.707745
CrossRef
Sports Medicine
The ActivityStat Hypothesis The Concept, the Evidence and the Methodologies
Gomersall, SR; Rowlands, AV; English, C; Maher, C; Olds, TS
Sports Medicine, 43(2): 135-149.
10.1007/s40279-012-0008-7
CrossRef
Contemporary Clinical Trials
Group physical therapy for veterans with knee osteoarthritis: Study design and methodology
Allen, KD; Bongiorni, D; Walker, TA; Bartle, J; Bosworth, HB; Coffman, CJ; Datta, SK; Edelman, D; Hall, KS; Hansen, G; Jennings, C; Lindquist, JH; Oddone, EZ; Senick, MJ; Sizemore, JC; St John, J; Hoenig, H
Contemporary Clinical Trials, 34(2): 296-304.
10.1016/j.cct.2012.12.007
CrossRef
Women & Health
Associations Between Lifestyle Physical Activity and Body Image Attitudes Among Women
Rote, AE; Swartz, AM; Klos, LA
Women & Health, 53(3): 282-297.
10.1080/03630242.2013.773956
CrossRef
Journal of Science and Medicine in Sport
For non-exercising people, the number of steps walked is more strongly associated with health than time spent walking
Lee, PH; Nan, HR; Yu, YY; McDowell, I; Leung, GM; Lam, TH
Journal of Science and Medicine in Sport, 16(3): 227-230.
10.1016/j.jsams.2012.10.005
CrossRef
Bmc Musculoskeletal Disorders
Electrical stimulation for chronic non-specific low back pain in a working-age population: a 12-week double blinded randomized controlled trial
Thiese, MS; Hughes, M; Biggs, J
Bmc Musculoskeletal Disorders, 14(): -.
ARTN 117
CrossRef
Medicine & Science in Sports & Exercise
Validation of the Kaiser Physical Activity Survey in Pregnant Women
SCHMIDT, MD; FREEDSON, PS; PEKOW, P; ROBERTS, D; STERNFELD, B; CHASAN-TABER, L
Medicine & Science in Sports & Exercise, 38(1): 42-50.

PDF (195)
Medicine & Science in Sports & Exercise
Discrepancies between Methods of Identifying Objectively Determined Physical Activity
HAM, SA; REIS, JP; STRATH, SJ; DUBOSE, KD; AINSWORTH, BE
Medicine & Science in Sports & Exercise, 39(1): 52-58.
10.1249/01.mss.0000235886.17229.42
PDF (111) | CrossRef
Medicine & Science in Sports & Exercise
Effect of Monitor Placement and of Activity Setting on the MTI Accelerometer Output
YNGVE, A; NILSSON, A; SJÖSTRÖM, M; EKELUND, U
Medicine & Science in Sports & Exercise, 35(2): 320-326.

PDF (271)
Medicine & Science in Sports & Exercise
Predictive Validity of Three ActiGraph Energy Expenditure Equations for Children
TROST, SG; WAY, R; OKELY, AD
Medicine & Science in Sports & Exercise, 38(2): 380-387.
10.1249/01.mss.0000183848.25845.e0
PDF (182) | CrossRef
Medicine & Science in Sports & Exercise
Comparison of Four ActiGraph Accelerometers during Walking and Running
JOHN, D; TYO, B; BASSETT, DR
Medicine & Science in Sports & Exercise, 42(2): 368-374.
10.1249/MSS.0b013e3181b3af49
PDF (330) | CrossRef
Medicine & Science in Sports & Exercise
Validation of the RT3 Triaxial Accelerometer for the Assessment of Physical Activity
ROWLANDS, AV; THOMAS, PW; ESTON, RG; TOPPING, R
Medicine & Science in Sports & Exercise, 36(3): 518-524.

PDF (184)
Medicine & Science in Sports & Exercise
Energy Cost in Children Assessed by Multisensor Activity Monitors
ARVIDSSON, D; SLINDE, F; LARSSON, S; HULTHÉN, L
Medicine & Science in Sports & Exercise, 41(3): 603-611.
10.1249/MSS.0b013e31818896f4
PDF (208) | CrossRef
Medicine & Science in Sports & Exercise
Individual Calibration for Estimating Free-Living Walking Speed Using the MTI Monitor
BARNETT, A; CERIN, E
Medicine & Science in Sports & Exercise, 38(4): 761-767.
10.1249/01.mss.0000210206.55941.b2
PDF (112) | CrossRef
Medicine & Science in Sports & Exercise
Measurement Properties of the Australian Women's Activity Survey
FJELDSOE, BS; MARSHALL, AL; MILLER, YD
Medicine & Science in Sports & Exercise, 41(5): 1020-1033.
10.1249/MSS.0b013e31819461c2
PDF (544) | CrossRef
Medicine & Science in Sports & Exercise
Comparison of the ActiGraph 7164 and the ActiGraph GT1M during Self-Paced Locomotion
KOZEY, SL; STAUDENMAYER, JW; TROIANO, RP; FREEDSON, PS
Medicine & Science in Sports & Exercise, 42(5): 971-976.
10.1249/MSS.0b013e3181c29e90
PDF (245) | CrossRef
Medicine & Science in Sports & Exercise
Refined Two-Regression Model for the ActiGraph Accelerometer
CROUTER, SE; KUFFEL, E; HAAS, JD; FRONGILLO, EA; BASSETT, DR
Medicine & Science in Sports & Exercise, 42(5): 1029-1037.
10.1249/MSS.0b013e3181c37458
PDF (266) | CrossRef
Medicine & Science in Sports & Exercise
Menopause, Physical Activity, and Body Composition/Fat Distribution in Midlife Women
STERNFELD, B; BHAT, AK; WANG, H; SHARP, T; QUESENBERRY, CP
Medicine & Science in Sports & Exercise, 37(7): 1195-1202.

PDF (710)
Medicine & Science in Sports & Exercise
Predicting Walking METs and Energy Expenditure from Speed or Accelerometry
BROOKS, AG; GUNN, SM; WITHERS, RT; GORE, CJ; PLUMMER, JL
Medicine & Science in Sports & Exercise, 37(7): 1216-1223.

PDF (587)
Medicine & Science in Sports & Exercise
Validity of Four Short Physical Activity Questionnaires in Middle-Aged Persons
MäDER, U; MARTIN, BW; SCHUTZ, Y; MARTI, B
Medicine & Science in Sports & Exercise, 38(7): 1255-1266.
10.1249/01.mss.0000227310.18902.28
PDF (799) | CrossRef
Medicine & Science in Sports & Exercise
Walking and Measurement
BASSETT, DR; MAHAR, MT; ROWE, DA; MORROW, JR
Medicine & Science in Sports & Exercise, 40(7): S529-S536.
10.1249/MSS.0b013e31817c699c
PDF (290) | CrossRef
Medicine & Science in Sports & Exercise
Sources of variance in daily physical activity levels as measured by an accelerometer
MATTHEWS, CE; AINSWORTH, BE; THOMPSON, RW; BASSETT, DR
Medicine & Science in Sports & Exercise, 34(8): 1376-1381.

PDF (770)
Medicine & Science in Sports & Exercise
International Physical Activity Questionnaire: 12-Country Reliability and Validity
PRATT, M; EKELUND, U; YNGVE, A; SALLIS, JF; OJA, P; CRAIG, CL; MARSHALL, AL; SJÖSTRÖM, M; BAUMAN, AE; BOOTH, ML; AINSWORTH, BE
Medicine & Science in Sports & Exercise, 35(8): 1381-1395.

PDF (575)
Medicine & Science in Sports & Exercise
Estimating Physical Activity Using the CSA Accelerometer and a Physical Activity Log
SCHMIDT, MD; FREEDSON, PS; CHASAN-TABER, L
Medicine & Science in Sports & Exercise, 35(9): 1605-1611.

PDF (162)
Medicine & Science in Sports & Exercise
Actigraph Accelerometer Interinstrument Reliability during Free-Living in Adults
MCCLAIN, JJ; SISSON, SB; TUDOR-LOCKE, C
Medicine & Science in Sports & Exercise, 39(9): 1509-1514.
10.1249/mss.0b013e3180dc9954
PDF (99) | CrossRef
Medicine & Science in Sports & Exercise
Comparison of three methods for measuring the time spent in physical activity
MACERA, CA; KIMSEY, CD; AINSWORTH, BE; BASSETT, D; STRATH, SJ; SWARTZ, AM; O’BRIEN, WL; THOMPSON, RW; JONES, DA
Medicine & Science in Sports & Exercise, 32(9): S457-S464.

PDF (115)
Medicine & Science in Sports & Exercise
Compendium of Physical Activities: an update of activity codes and MET intensities
AINSWORTH, BE; HASKELL, WL; WHITT, MC; IRWIN, ML; SWARTZ, AM; STRATH, SJ; O’BRIEN, WL; BASSETT, D; SCHMITZ, KH; EMPLAINCOURT, PO; JACOBS, D; LEON, AS
Medicine & Science in Sports & Exercise, 32(9): S498-S516.

PDF (553)
Medicine & Science in Sports & Exercise
Predicting Energy Expenditure in Elders with the Metabolic Cost of Activities
CHOQUETTE, S; CHUIN, A; LALANCETTE, D; BROCHU, M; DIONNE, IJ
Medicine & Science in Sports & Exercise, 41(10): 1915-1920.
10.1249/MSS.0b013e3181a6164a
PDF (142) | CrossRef
Medicine & Science in Sports & Exercise
Energy Expenditure Estimated by Accelerometry and Doubly Labeled Water: Do They Agree?
LEENDERS, NY; SHERMAN, WM; NAGARAJA, HN
Medicine & Science in Sports & Exercise, 38(12): 2165-2172.
10.1249/01.mss.0000235883.94357.95
PDF (188) | CrossRef
Epidemiology
Self-reported Confidence in Recall as a Predictor of Validity and Repeatability of Physical Activity Questionnaire Data
Cust, AE; Armstrong, BK; Smith, BJ; Chau, J; van der Ploeg, HP; Bauman, A
Epidemiology, 20(3): 433-441.
10.1097/EDE.0b013e3181931539
PDF (436) | CrossRef
Journal of Clinical Psychopharmacology
Aripiprazole Added to Overweight and Obese Olanzapine-Treated Schizophrenia Patients
Henderson, DC; Fan, X; Copeland, PM; Sharma, B; Borba, CP; Boxill, R; Freudenreich, O; Cather, C; Evins, A; Goff, DC
Journal of Clinical Psychopharmacology, 29(2): 165-169.
10.1097/JCP.0b013e31819a8dbe
PDF (116) | CrossRef
Medicine & Science in Sports & Exercise
Response
Troiano, RP; Berrigan, D
Medicine & Science in Sports & Exercise, 40(6): 1189.
10.1249/MSS.0b013e31817057eb
PDF (54) | CrossRef
Medicine & Science in Sports & Exercise
Epoch Length and Accelerometer Outputs in Children: Comparison to Direct Observation
MCCLAIN, JJ; ABRAHAM, TL; BRUSSEAU, TA; TUDOR-LOCKE, C
Medicine & Science in Sports & Exercise, 40(12): 2080-2087.
10.1249/MSS.0b013e3181824d98
PDF (144) | CrossRef
Medicine & Science in Sports & Exercise
Accelerometer Prediction of Energy Expenditure: Vector Magnitude Versus Vertical Axis
HOWE, CA; STAUDENMAYER, JW; FREEDSON, PS
Medicine & Science in Sports & Exercise, 41(12): 2199-2206.
10.1249/MSS.0b013e3181aa3a0e
PDF (840) | CrossRef
Back to Top | Article Outline
Keywords:

EXERCISE; PHYSICAL ACTIVITY; OXYGEN UPTAKE; MOTION SENSOR

© 2000 Lippincott Williams & Wilkins, Inc.

Login

Article Tools

Images

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us