Skip Navigation LinksHome > April 2000 - Volume 32 - Issue 4 > Endurance sports after total knee replacement: a biomechanic...
Text sizing:
A
A
A
Medicine & Science in Sports & Exercise:
CLINICAL SCIENCES: Clinical Investigation

Endurance sports after total knee replacement: a biomechanical investigation

KUSTER, MARKUS S.; SPALINGER, ESTHER; BLANKSBY, BRIAN A.; GÄCHTER, ANDRÉ

Free Access
Article Outline
Collapse Box

Author Information

Klinik für Orthopädische Chirurgie, Kantonsspital, CH 9007 St. Gallen, SWITZERLAND; Sulzer Orthopedics, Postfach 65, 8404 Winterthur, SWITZERLAND; and Department of Human Movement and Exercise Science, The University of Western Australia, Nedlands WA 6907, AUSTRALIA

Submitted for publication March 1999.

Accepted for publication July 1999.

Address for correspondence: Markus Kuster, M.D., Ph.D., Klinik für Orthopädische Chirurgie, Kantonsspital, CH 9007 St. Gallen, Switzerland; E-mail: mskuster@bluewin.ch.

Collapse Box

Abstract

KUSTER M, S., E. SPALINGER, B. A. BLANKSBY, and A. GÄCHTER. Endurance sports after total knee replacement: a biomechanical investigation. Med. Sci. Sports Exerc., Vol. 32, No. 4, pp. 721–724, 2000.

Purpose: No biomechanical evaluation of total knee designs exists for loads occurring during sports activities. It was the purpose of the present study to evaluate the contact stress distribution and contact area of different knee joint designs for loads that occur during four common recreational endurance activities.

Methods: Three different total knee designs were evaluated for loads occurring during cycling (1.2 body weight (BW) at 80° of knee flexion), power walking (4 BW at 20°), hiking (8 BW at 40°), and jogging (9 BW at 50°) using Fuji pressure-sensitive film. The designs consisted of a flat tibial inlay, a curved inlay, and an inlay with mobile bearings. Five measurements were conducted for each load. The pressure sensitive films were scanned and analyzed using an image analysis program.

Results: During cycling, the area with stress levels above the yield point of polyethylene (overloaded area) was below 15 mm2 for each design. During power walking, the mobile bearing design showed no overloaded area, whereas it was below 50 mm2 for the flat and curved design. During downhill walking and jogging, more than 140 mm2 were overloaded for each design.

Conclusions: It was concluded that patients after total knee replacement should alternate activities such as power walking and cycling. For mountain hiking, patients are advised to avoid descents or at least use ski poles. Jogging or sports involving running should be discouraged after total knee replacement.

Regular exercise has been shown to reduce all-cause mortality, anxiety, and depression, and improve cardiovascular health (3,19). Other beneficial effects of physical fitness are weight loss, increased bone density, and improved muscle coordination. The American College of Sports Medicine recommends endurance exercise such as jogging, cycling, swimming, power walking, or hiking for 20–60 min, 3–5 times a week, in order to develop and maintain cardiorespiratory and muscular fitness (1). There are few studies which address sports participation after total hip replacement (11,13,15,18,23,25) or total knee replacement (16,18) despite the increasing numbers of total joint replacements performed. Furthermore, most biomechanical evaluations of total knee replacements have considered only level walking with loads of 3–4 body weight (BW) (4–6,9,21,24,26).

Mountain hiking involves ascending and descending steep trails. Walking uphill has been shown to produce tibiofemoral compressive forces of 4–5 BW (17). However, during downhill walking tibiofemoral loads as high as 8 BW have been recorded at knee flexion angles of 40° (14).

During slow jogging (9.7 km·h (1), an extension moment of 2.9 Nm·kg1 BW was found at 50° of knee flexion (27). A similar value of 2.7 Nm·kg1 BW at 40° was recorded for downhill walking (14). Hence, tibiofemoral compressive loads of 8–9 BW at 50° of knee flexion can be assumed during slow jogging.

It has been reported that walking speeds of 6–7 km·h−1 are necessary to obtain and maintain aerobic fitness (26). Tibiofemoral loads as high as 4 BW at 20° of knee flexion at a speed of 5.3 km·h (1 (14) or 7.2 km·h−1 (20) have been recorded.

Extensive investigations of cycling have demonstrated tibiofemoral compressive loads of 1.2 BW at 80–90° of knee flexion while subjects pedaled at 60 cycles·min1 and a 120-W load (12).

Contact area and stress evaluations of total knee replacements for loads that occur during these sport activities are not available in the current literature. Therefore, physicians are forced to make recommendations based on subjective opinion rather than scientific evidence (18). This study sought to evaluate the contact stress distribution and contact area of different knee joint designs for loads which occur during four common recreational activities. The purpose was to enable objective postoperative recommendations regarding sport participation after total knee replacement.

Back to Top | Article Outline

MATERIALS AND METHODS

Three different total knee designs were evaluated. The designs consisted of a flat, a curved, and a mobile bearing tibial inlay. In most designs, the tibial radius remains constant, whereas the femoral radius in the sagittal plane is dependent on the knee flexion angle. The femoral radius for the flat and the curved design was 25 mm for knee flexion angles from 0 to 60°. From 60 to 110°, the radius decreased to 16.5 mm. The mobile bearing design showed a femoral radius of 37 mm from 0 to 21°. From 21 to 86°, the radius changed to 19 mm, and above 86° the radius decreased further to 17 mm. For all three designs, a medium-sized prosthesis was used. The polyethylene thickness of the tested inlays was 11 mm for the flat design, 9.4 mm for the curved design, and 11.5 mm for the mobile bearing design. It has been shown that the thickness of the polyethylene has a minimal effect on the surface and von Mises stress if it is greater than 6–8 mm (4). Each design was tested with a load of 4 BW (2904 N) near full extension (e.g., power walking) (14,20). Because the radius of the femoral components did not change between 40 and 60° for all three designs, it was possible to test the designs for 8 BW (5808 N) and 9 BW (6533 N) at about 40–50° of simulated knee flexion (e.g., downhill walking (14) and jogging (27)). For cycling, the designs were tested with a load of 1.2 BW at 80° of knee flexion (12). All designs were cemented into a metal block and then mounted on a material testing system (Zwick, Materialprüfmaschine, Ulm, Germany). The tibial plateau and the femoral component were preloaded with 50 N with all adjusting screws loose. The femoral component could adjust itself at the lowest point of the tibial inlay, and an even load distribution was ensured between the medial and lateral compartment. The screws were then tightened and the femoral component was lifted off the inlay to insert the Fuji prescale film. Low prescale film was used for the mobile bearing design near full extension. Medium prescale films were used for all other measurements. The load was increased with 100 N·s1. The final load was applied for 3 s and then decreased again with 100 N·s1. For each load, five measurements were obtained. The films were scanned (Hewlett-Packard Scanjet 4c, Avondale, PA) and an image analysis program (Image Pro, Media Cybernetics, Silver Spring, MD) was used to obtain the total contact area and overloaded area. The latter was defined as the area, which recorded stress levels above the yield point of ultrahigh molecular weight polyethylene (UHMWPE). This parameter has been suggested for the assessment of implant designs rather than peak stress values (7). The yield strength is the nominal stress at yielding, or the change from elastic to measurable plastic deformation. In many materials, it is difficult to pin point the yield point on the stress-strain curve (2). Hence, the yield strengths of UHMWPE has been recorded from 12.7 MPa (9) to 32 MPa (8). This study assumed a yield point of 25 MPa (2,10).

Back to Top | Article Outline

RESULTS

The contact area increased with increasing loads for all three designs due to indentation of the femoral condyle in the tibial inlay. The overall contact area was greater during power walking, downhill walking, or jogging for the mobile bearing design when compared with the flat or curved designs. The highest contact area was found for the mobile bearing design during power walking because this design showed full conformity between 0 and 20° of knee flexion (Fig. 1).

Figure 1The
Figure 1The
Image Tools

The overloaded area (area with stress levels above 25 MPa) for each design during cycling, power walking, downhill walking, and jogging are reported in Figure 2. A small overloaded area ranging from 7.6 to 13.6 mm2 occurred during cycling for all three designs. During power walking, the mobile bearing design showed no overloaded area. For the flat and curved designs, the overloaded area remained well below 50 mm2. During downhill walking and jogging, the overloaded area reached levels as high as 180 mm2. Hence, 40–70% of the total contact area was overloaded during downhill walking or jogging.

Figure 2
Figure 2
Image Tools
Back to Top | Article Outline

DISCUSSION

There are few studies addressing sports involvement after total hip or total knee replacement. Dubs et al. (11) retrospectively analyzed the charts of 150 younger patients over an average follow-up period of 5.8 yr. They found no increased loosening of total hip replacements in patients with intense sporting activities and concluded that there was no need to prohibit sport after total hip replacement. This was in contrast to Kilgus et al. (13), who found a two-fold increased risk of revision surgery after total hip replacement for patients who participated regularly in sporting activities or heavy labor. However, the effects of patients activities were not seen until 10 yr postsurgery.

McGrory et al. (18) interviewed 28 orthopaedic surgeons about their recommendations for sports after total hip or total knee replacement. If 75% of the surgeons considered the activity safe, it was labeled “recommended”; and if 75% did not allow their patients to participate in a certain activity, it was identified as “not recommended.” The same activities were recommended by these surgeons after total hip or total knee replacement (18). We believe that it is important to distinguish between suitable activities after total hip or total knee replacement because of the different geometries. Although total hip replacements are designed as a ball and socket joint with full congruency throughout the flexion range, many total knee replacements exhibit a mismatch between the femoral and tibial radius with high peak pressures on the polyethylene inlay. These high pressures are above the yield point and could lead to increased wear including delamination and destruction of the inlay. Mallon and Callaghan found a higher incidence of pain and radiographic lucent lines in active golfers after total knee replacement (16) than after total hip arthroplasties (15). The authors are also aware of one patient who participated in a marathon run after total knee replacement despite being discouraged by the surgeon. The polyethylene inlay broke at the 35-km mark due to severe delamination and destruction. In order to recommend suitable physical activities after total knee replacement, it is important to consider both the load and the knee flexion angle of the peak load. Many designs show increased conformity near full extension but the conformity ratio decreases beyond 30° due to the reduced femoral radius. Activities such as hiking or jogging may pose two main problems for a modern knee design. First, the loads can reach up to 8 or 9 BW. Second, the peak loads occur between 40 and 60° of knee flexion, where many knee designs do not display a high conformity. The present study showed that 40–70% of the overall contact area was stressed above the yield point when applying tibiofemoral loads that occur during jogging or downhill walking. Also, the overloaded contact area reached levels of more than 150 mm2. Regular jogging or hiking with intense downhill walking produces a large overloaded area that may endanger the polyethylene inlay of most current total knee prostheses.

During power walking, the tibiofemoral load can reach up to 4 BW at 20° of knee flexion (14,20). At 20° of knee flexion, the tested mobile bearing design was nearly conforming, and the peak stress was never above the yield point of polyethylene. For the flat and curved inlay, power walking produced some stress levels above the yield point. However, the overloaded area was three times smaller than that found for jogging or downhill walking. Therefore, it is suggested that power walking can still be permitted after a total knee replacement.

The peak load for cycling was found at 80° of knee flexion (12). During these angles of flexion, most designs show little conformity. However, the tibiofemoral load is as small as 1.2 BW, which reduces the stress levels on the inlay. The present study showed that the overloaded area for 1.2 BW was extremely small ranging between 7.6 and 13.6 mm2. It was concluded that cycling can be performed after total knee replacement. To further reduce forces about the knee when cycling, patients should place the bicycle seat as high as possible (12).

Some limitations of the present study must be mentioned. First, only static loads were applied. However, the tested loads represent the peak values for these activities. Hence, the additional values of a dynamic investigation would be smaller and not alter the conclusions. Second, an even load distribution was assumed. Because it is known that high adduction moments may occur (17), the present study may underestimate the stress on the polyethylene. Third, torques and rotatory stress occurring during these activities were not considered in the present study. However, until more sophisticated biomechanical investigations are developed, the following recommendations are proposed.

Cycling and power walking seem to be the least demanding endurance activities for the knee joint. Patients performing endurance sports after total knee replacement should alternate activities such as power-walking and cycling. Because cycling and power walking load the knee joint at different flexion angles, different parts of the tibial inlay will be stressed and ensure a more even wear pattern. For mountain hiking, patients are advised to avoid descents or at least use ski poles and walk slowly downhill to reduce the load on the knee joint. Furthermore, they should not carry a heavy backpack. Regular jogging, or sports involving running, should be discouraged after total knee replacement.

Back to Top | Article Outline

REFERENCES

1. American College of Sports Medicine Position Statement. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med. Sci. Sports Exerc. 22:265–274, 1990.

2. Ashby, M. F., and D. R. H. Jones. Engineering Materials 1: An Introduction to Their Properties and Applications. Oxford: Pergamon Press, 1980, pp. 71–85.

3. Barry, H. C., and S. C. Eathorne. Exercise and aging. Med. Clin. North Am. 78:357–376, 1994.

4. Bartel, D. L., V. L. Bicknell, and T. M. Wright. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J. Bone Joint Surg. 68-A:1041–1051, 1986.

5. Bartel, D. L., J. J. Rawlison, A. H. Burstein, C. S. Ranawat, and W. F. Flynn. Stresses in polyethylene components of contemporary total knee replacements. Clin. Orthop. 317:376–82, 1995.

6. Blunn G. W., P. S. Walker, A. Joshi, and K. Hardinges The dominance of cyclic sliding in producing wear in total knee replacements. Clin. Orthop. 273:253–260, 1991.

7. Bristol, R. E., D. C. Fitzpatrick, T. D. Brown, and J. J. Callaghan. Non uniformity of contact stress on polyethylene inserts in total knee arthroplasty. Clin. Biomech. 11:75–80, 1996.

8. Buechel, F. F., M. J. Pappas, and G. Makris. Evaluation of contact stress in metal-backed patellar replacements: a predictor of survivorship. Clin. Orthop. 273:190–197, 1991.

9. Collier, J. P., M. B. Mayor, V. A. Surprenant, H. P. Surprenant, L. A. Dauphinais, and R. E. Jensen. The biomechanical problems of polyethylene as a bearing surface. Clin. Orthop. 261:107–113, 1990.

10. Collier, J. P., M. B. Mayor, J. L. McNamara, V. A. Suprenant, and R. E. Jensen. Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin. Orthop. 273:232–242, 1991.

11. Dubs, L., N. Gschwend, and U. Munzinger. Sport after total hip arthroplasty. Arch. Orthop. Trauma Surg. 101:161–169, 1983.

12. Ericson, M. On the biomechanics of cycling: a study of joint and muscle load during exercise on the bicycle ergometer. Scand. J. Rehabil. Med. Suppl. 16:1–43, 1986.

13. Kilgus, D. J., F. J. Dorey, G. A. M. Finerman, and H. C. Amstutz. Patient activity, sports participation, and impact loading on durability of cemented total hip replacements. Clin. Orthop. 269:25–31, 1991.

14. Kuster, M. S., G. A. Wood, G. W. Stachowiak, and A. Gächter. Joint load considerations in total knee replacement. J. Bone Joint Surg. 79-B:109–113, 1997.

15. Mallon, W. J., and J. J. Callaghan. Total hip arthroplasty in active golfers. J. Arthroplasty 7:339–346, 1992.

16. Mallon, W. J., and J. J. Callaghan. Total knee arthroplasty in active golfers. J. Arthroplasty 8:299–306, 1993.

17. Morrison, J. B. Function of the knee joint in various activities. Biomed. Eng. 4:573–580, 1969.

18. McGrory, B. J., M. J. Stuart, and F. H. Sim. Participation in sports after hip and knee arthroplasty: review of literature and survey of surgeon preferences. Mayo Clin. Proc. 70:342–348, 1995.

19. Paffenbarger, R. S., P. H. Hyde, A. L. Wing, and C. C. Hsieh. Physical activity, all-cause mortality, and longevity of college alumni. N. Engl. J. Med. 314:605–613, 1986.

20. Paul, J. P. Approaches to design-force actions transmitted by joints in the human body. Proc. R. Soc. Lond. B. 192:163–172, 1972.

21. Reilly, D., P. S. Walker, M. Ben-Dov, and F. C. Ewald. Effects of tibial components on load transfer in the upper tibia. Clin. Orthop. 165:273–282, 1982.

22. Rippe, J. M., A. Ward, J. P. Porcari, and P. S. Freedson. Walking for health and fitness. JAMA 259:2720–2724, 1988.

23. Ritter, M. A., and J. J. Meding. Total hip arthroplasty: can the patient play sports again? Orthopedics 10:1447–1452, 1987.

24. Sathasivam, S., and P. Walker. Optimization of the bearing surface geometry of total knees. J. Biomech. 27:255–264, 1994.

25. Visury, T., and R. Honkanen. Total hip replacement: its influence on spontaneous recreation exercise habits. Arch. Phys. Med. Rehabil. 61:325–328, 1980.

26. Walker, P. S. Bearing surface design in total knee replacement. Eng. Med. 17:149–156, 1988.

27. Winter, D. A. Moments of force and mechanical power in jogging. J. Biomech. 16:91–97, 1983.

Cited By:

This article has been cited 17 time(s).

Orthopade
Problems of total knee replacement from a sports orthopedics point of view
Kuster, MS; Grob, K; Gachter, A
Orthopade, 29(8): 739-745.

Gait & Posture
Knee and hip kinetics during normal stair climbing
Costigan, PA; Deluzio, KJ; Wyss, UP
Gait & Posture, 16(1): 31-37.
PII S0966-6362(01)00201-6
CrossRef
Annals of the Rheumatic Diseases
Sports activities 5 years after total knee or hip arthroplasty: the Ulm Osteoarthritis Study
Huch, K; Muller, KAC; Sturmer, T; Brenner, H; Puhl, W; Gunther, KP
Annals of the Rheumatic Diseases, 64(): 1715-1720.
10.1136/ard.2004.033266
CrossRef
International Sportmed Journal
Physical activity after total joint replacement
Mayer, F; Dickhuth, HH
International Sportmed Journal, 9(1): 39-46.

Clinical Orthopaedics and Related Research
Knee arthroplasties have similar results in high- and low-activity patients
Mont, MA; Marker, DR; Seyler, TM; Gordon, N; Hungerford, DS; Jones, LC
Clinical Orthopaedics and Related Research, (): 165-173.
10.1097/BLO.0b013e318042b5e7
CrossRef
Orthopedics
Factors affecting polyethylene wear in total knee arthroplasty
Kuster, MS; Stachowiak, GW
Orthopedics, 25(2): S235-S242.

International Orthopaedics
Patient-perceived outcome measures following unicompartmental knee arthroplasty with mini-incision
Jahromi, I; Walton, NP; Dobson, PJ; Lewis, PL; Campbell, DG
International Orthopaedics, 28(5): 286-289.
10.1007/s00264-004-0573-y
CrossRef
American Journal of Sports Medicine
Return to sports and recreational activity after unicompartmental knee arthroplasty
Naal, FD; Fischer, M; Preuss, A; Goldhahn, J; von Knoch, F; Preiss, S; Munzinger, U; Drobny, T
American Journal of Sports Medicine, 35(): 1688-1695.
10.1177/0363546507303562
CrossRef
Journal of Arthroplasty
Activity Recommendations After Total Hip and Knee Arthroplasty A Survey of the American Association for Hip and Knee Surgeons
Swanson, EA; Schmalzried, TP; Dorey, FJ
Journal of Arthroplasty, 24(6): 120-126.
10.1016/j.arth.2009.05.014
CrossRef
Clinical Rheumatology
Unicompartmental knee arthroplasty: a review of literature
Saccomanni, B
Clinical Rheumatology, 29(4): 339-346.
10.1007/s10067-009-1354-1
CrossRef
Sports Medicine
Exercise recommendations after total joint replacement - A review of the current literature and proposal of scientifically based guidelines
Kuster, MS
Sports Medicine, 32(7): 433-445.

Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine
Effect of stair descent loading on ultra-high molecular weight polyethylene wear in a force-controlled knee simulator
Benson, LC; DesJardins, JD; Harman, MK; LaBerge, M
Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 216(): 409-418.

Journal of Arthroplasty
Meta-Analysis Comparing Outcomes of Fixed-Bearing and Mobile-Bearing Prostheses in Total Knee Arthroplasty
Oh, KJ; Pandher, DS; Lee, SH; Joon, SDS; Lee, ST
Journal of Arthroplasty, 24(6): 873-884.
10.1016/j.arth.2008.06.002
CrossRef
Orthopade
Rehabilitation guidelines after total knee arthroplasty
Bizzini, M; Boldt, J; Munzinger, U; Drobny, T
Orthopade, 32(6): 527-534.
10.1007/s00132-003-0482-6
CrossRef
Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete
Physical activity after total knee replacement
Bock, P; Schatz, K; Wurnig, C
Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 141(3): 272-276.

Deutsche Zeitschrift Fur Sportmedizin
Sport Exposure and Load Capacity after Total Joint Replacement
Huch, K; Weithoner, KA; Gunther, KP; Reichel, H; Mattes, T
Deutsche Zeitschrift Fur Sportmedizin, 60(4): 84-89.

American Journal of Physical Medicine & Rehabilitation
Rehabilitation After Hip- and Knee-Joint Replacement: An Experience- and Evidence-Based Approach to Care
Brander, V; Stulberg, SD
American Journal of Physical Medicine & Rehabilitation, 85(11): S98-S118.
10.1097/01.phm.0000245569.70723.9d
PDF (865) | CrossRef
Back to Top | Article Outline
Keywords:

SPORT; STRESS; WALKING; HIKING; JOGGING; CYCLING

©2000The American College of Sports Medicine

Login

Article Tools

Images

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us