Skip Navigation LinksHome > May 2014 - Volume 46 - Issue 5 > Earbud-Based Sensor for the Assessment of Energy Expenditure...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0000000000000183
Applied Sciences

Earbud-Based Sensor for the Assessment of Energy Expenditure, HR, and V˙O2max


Collapse Box


Introduction/Purpose: The goal of this program was to determine the feasibility of a novel noninvasive, highly miniaturized optomechanical earbud sensor for accurately estimating total energy expenditure (TEE) and maximum oxygen consumption (V˙O2max). The optomechanical sensor module, small enough to fit inside commercial audio earbuds, was previously developed to provide a seamless way to measure blood flow information during daily life activities. The sensor module was configured to continuously measure physiological information via photoplethysmography and physical activity information via accelerometry. This information was digitized and sent to a microprocessor where digital signal-processing algorithms extract physiological metrics in real time. These metrics were streamed wirelessly from the earbud to a computer.

Methods: In this study, 23 subjects of multiple physical habitus were divided into a training group of 14 subjects and a validation group of 9 subjects. Each subject underwent the same exercise measurement protocol consisting of treadmill-based cardiopulmonary exercise testing to reach V˙O2max. Benchmark sensors included a 12-lead ECG sensor for measuring HR, a calibrated treadmill for measuring distance and speed, and a gas-exchange analysis instrument for measuring TEE and V˙O2max. The earbud sensor was the device under test. Benchmark and device under test data collected from the 14-person training data set study were integrated into a preconceived statistical model for correlating benchmark data with earbud sensor data. Coefficients were optimized, and the optimized model was validated in the 9-person validation data set.

Results: It was observed that the earbud sensor estimated TEE and V˙O2max with mean ± SD percent estimation errors of −0.7 ± 7.4% and −3.2 ± 7.3%, respectively.

Conclusion: The earbud sensor can accurately estimate TEE and V˙O2max during cardiopulmonary exercise testing.

© 2014 American College of Sports Medicine


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us