Home Current Issue Previous Issues Published Ahead-of-Print Collections For Authors Journal Info
Skip Navigation LinksHome > Published Ahead-of-Print > Passive Muscle Length Changes Affect Twitch Potentiation in...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0000000000000245
Original Investigation: PDF Only

Passive Muscle Length Changes Affect Twitch Potentiation in Power Athletes

Gago, Paulo; Marques, Mário C.; Marinho, Daniel A.; Ekblom, Maria M.

Published Ahead-of-Print
Collapse Box

Abstract

Introduction: A conditioning maximal voluntary muscle action (MVC) has been shown to induce post-activation potentiation, i.e. improved contractile muscle properties, when muscles are contracted isometrically. It is still uncertain how the contractile properties are affected during ongoing muscle length changes. The purpose of this study was to investigate the effects of a 6 s conditioning MVC on twitch properties of the plantar flexors during ongoing muscle length changes.

Methods: Peak twitch, rate of torque development (RTD) and relaxation (RTR), rising time and half relaxation time (HRT) were measured from supramaximal twitches evoked in the plantar flexors of 11 highly trained athletes. Twitches were evoked prior to a 6 s MVC and subsequently on 8 different occasions during a 10-minute recovery, for five different modes: fast lengthening, slow lengthening, isometric, fast shortening and slow shortening of the plantar flexors.

Results: The magnitude and duration of effects from the conditioning MVC were significantly different between modes. Peak twitch, RTD and RTR significantly increased for all modes but more so for twitches evoked during fast and slow shortening as compared to lengthening. Rising time was reduced in the lengthening modes, but slightly prolonged in the shortening modes. HRT was significantly reduced for all modes except fast lengthening.

Conclusion: The findings show that the effects of a conditioning MVC on twitch contractile properties are dependent on direction and velocity of ongoing muscle length changes. This may imply that functional enhancements from a conditioning MVC might be expected to be greatest for concentric muscle actions, but are still present in isometric and eccentric parts of a movement.

(C) 2014 American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us