Skip Navigation LinksHome > March 2014 - Volume 46 - Issue 3 > Muscle Glycogen Content Modifies SR Ca2+ Release Rate in Eli...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0000000000000132
Basic Sciences

Muscle Glycogen Content Modifies SR Ca2+ Release Rate in Elite Endurance Athletes


Collapse Box


Purpose: The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes.

Methods: Fourteen highly trained male triathletes (V˙O2max = 66.5 ± 1.3 mL O2·kg−1·min−1), performed 4 h of glycogen-depleting cycling exercise (HRmean = 73% ± 1% of maximum). During the first 4 h of recovery, athletes received either water (H2O) or carbohydrate (CHO), separating alterations in muscle glycogen content from acute changes affecting SR function and performance. Thereafter, all subjects received CHO-enriched food for the remaining 20-h recovery period.

Results: Immediately after exercise, muscle glycogen content and SR Ca2+ release rate was reduced to 32% ± 4% (225 ± 28 mmol·kg−1 dw) and 86% ± 2% of initial levels, respectively (P < 0.01). Glycogen markedly recovered after 4 h of recovery with CHO (61% ± 2% of preexercise) and SR Ca2+ release rate returned to preexercise level. However, in the absence of CHO during the first 4 h of recovery, glycogen and SR Ca2+ release rate remained depressed, with the normalization of both parameters at the end of the 24 h of recovery after receiving a CHO-enriched diet. Linear regression demonstrated a significant correlation between SR Ca2+ release rate and muscle glycogen content (P < 0.01, r2 = 0.30). The 4 h of cycling exercise reduced Wpeak by 5.5%–8.9% at different cadences (P < 0.05), and Wpeak was normalized after 4 h of recovery with CHO, whereas Wpeak remained depressed (P < 0.05) after water provision. Wpeak was fully recovered after 24 h in both the H2O and the CHO group.

Conclusion: In conclusion, the present results suggest that low muscle glycogen depresses muscle SR Ca2+ release rate, which may contribute to fatigue and delayed recovery of Wpeak 4 h postexercise.

© 2014 American College of Sports Medicine


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us