Share this article on:

A Single Dose of Beetroot Juice Enhances Cycling Performance in Simulated Altitude

Muggeridge, David J.1,2; Howe, Christopher C. F.2; Spendiff, Owen2; Pedlar, Charles3; James, Philip E.4; Easton, Chris1,2

Medicine & Science in Sports & Exercise: January 2014 - Volume 46 - Issue 1 - p 143–150
doi: 10.1249/MSS.0b013e3182a1dc51
Applied Sciences

Introduction Increasing nitric oxide bioavailability via supplementation with nitrate-rich beetroot juice (BR) has been shown to attenuate the negative effect of hypoxia on peripheral oxygen saturation and exercise tolerance.

Purpose We investigated the effects of a single dose of concentrated BR on the physiological responses to submaximal exercise and time trial (TT) performance in trained cyclists exposed to moderate simulated altitude (approximately 2500 m).

Methods Nine competitive amateur male cyclists (age, 28 ± 8 yr; V˙O2peak at altitude, 51.9 ± 5.8 mL·kg−1·min−1) completed four exercise trials consisting of an initial graded test to exhaustion and three performance trials on a cycle ergometer. The performance trials comprised 15 min of submaximal steady-state exercise at 60% maximum work rate and a 16.1-km TT. The second and third trials were preceded by ingestion of either 70 mL of BR or nitrate-depleted BR (PLA) 3 h before exercise.

Results Plasma nitrate (PLA, 39.1 ± 3.5 µM; BR, 150.5 ± 9.3 µM) and nitrite (PLA, 289.8 ± 27.9 nM; BR, 678.1 ± 103.5 nM) measured immediately before exercise were higher after ingestion of BR compared with that after PLA (P < 0.001, P = 0.004). V˙O2 during steady-state exercise was lower in the BR trial (2542 ± 114 mL·min−1) than that in the PLA trial (2727 ± 85 mL·min−1, P = 0.049). TT performance was significantly faster after BR (1664 ± 14 s) than that after PLA (1702 ± 15 s, P = 0.021).

Conclusion A single dose of BR lowered V˙O2 during submaximal exercise and enhanced TT performance of trained cyclists in normobaric hypoxia. Consequently, ingestion of BR may be a practical and effective ergogenic aid for endurance exercise at altitude.

1Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, Scotland, UNITED KINGDOM; 2School of Life Sciences, Kingston University, Kingston upon Thames, England, UNITED KINGDOM; 3School of Sport, Health and Applied Science, St Mary’s University College, Twickenham, England, UNITED KINGDOM; and 4Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, Wales, UNITED KINGDOM

Address for correspondence: Chris Easton, B.Sc., Ph.D., FHEA, Institute for Clinical Exercise and Health Science, University of the West of Scotland, Almada Street, Hamilton ML3 0JB, Scotland, United Kingdom; E-mail: chris.easton@uws.ac.uk.

Submitted for publication January 2013.

Accepted for publication June 2013.

© 2014 American College of Sports Medicine