Skip Navigation LinksHome > April 2013 - Volume 45 - Issue 4 > Cognition and Motor Impairment Correlates with Exercise Test...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31827a0169
Clinical Sciences

Cognition and Motor Impairment Correlates with Exercise Test Performance after Stroke


Collapse Box


Introduction: Exercise not only benefits physical and cardiovascular function in older adults with multiple chronic conditions but may also improve cognitive function. Peak HR, a physiological indicator for maximal effort, is the most common and practical means of establishing and monitoring exercise intensity. In particular, in the absence of graded maximal exercise test (GXT) results, age-predicted maximal HR values are typically used. Using individuals with stroke as a model for examining older adults with coexisting cardiovascular and neuromotor conditions, the purpose of this article was to examine the determinants associated with achieving age-predicted maximal HR on a GXT, with respect to neurological, cognitive, and lower limb function.

Methods: Forty-seven participants with stroke (age, 67 ± 7 yr; 4 ± 3 yr poststroke (mean ± SD)) performed GXT. The peak values for gas exchange, HR, and RPE were noted. Logistic regression analysis was performed to examine determinants (neurological impairment, leg motor impairment, Montreal Cognitive Assessment score, and walking ability) associated with the ability to achieve age-predicted maximal HR on the GXT.

Results: V˙O2peak was 16.5 ± 6 mL·kg−1·min−1. Fourteen (30%) participants achieved ≥100% of age-predicted maximal HR. Logistic regression modeling revealed that the ability to achieve this threshold was associated with less leg motor impairment (P = 0.02; odds ratio, 2.3) and higher cognitive scores (P = 0.048; odds ratio, 1.3).

Conclusions: These results suggest that noncardiopulmonary factors such as leg motor impairment and cognitive function are important contributors to achieving maximal effort during exercise tests. This study has important implications for poststroke exercise prescription, whereby training intensities that are based on peak HR from GXT may be underestimated among individuals with cognitive and physical impairments.

©2013The American College of Sports Medicine


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us