Skip Navigation LinksHome > January 2013 - Volume 45 - Issue 1 > Neuromuscular Function after a Bout of Low-Load Blood Flow–R...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31826c6fa8
Basic Sciences

Neuromuscular Function after a Bout of Low-Load Blood Flow–Restricted Exercise

COOK, SUMMER B.; MURPHY, BETHANY G.; LABARBERA, KATHERINE E.

Collapse Box

Abstract

Purpose: This study compared endurance and neuromuscular function after bouts of low-load (LL), high-load (HL), and LL blood flow–restricted (LLBFR) resistance exercise.

Methods: Eight recreationally active male subjects completed three sets of dynamic knee extensions to volitional failure under three conditions: HL (70% peak torque), LL (20% peak torque), and LLBFR (20% peak torque with an occlusive cuff inflated to 180 mm Hg wrapped around the thigh). Before and immediately after exercise, isometric torque, central activation, electrically evoked torque, and muscle activation via surface EMG were measured.

Results: Isometric torque and evoked torque decreased an average of 37% and 40%, respectively (P < 0.01) in all conditions after exercise. There were no differences in the toque decrements between the conditions (P > 0.05). Percent central activation did not change after any condition (P = 0.09). Rate of torque development declined an average of 26% after all three conditions (P = 0.003), and rate of half-relaxation time was depressed by 48% after the HL condition (P = 0.004) only. EMG amplitude was greater in the HL condition at the beginning and end of exercise compared with the LL and LLBFR conditions (P = 0.001). At the end of exercise, EMG amplitude rose 19% (P = 0.02) and was not different among conditions (P > 0.05). Subjects performed more repetitions during the LL and LLBFR conditions (P < 0.05).

Conclusion: Although LL and LLBFR resistance exercise to volitional failure exhibit lower levels of muscle activation than HL exercise, similar torque decrements occur after all bouts of resistance exercise, and the muscle fatigue can be attributed to peripheral factors.

©2013The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us