Skip Navigation LinksHome > April 2012 - Volume 44 - Issue 4 > Impact of Caffeine and Protein on Postexercise Muscle Glycog...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31823a40ef
Applied Sciences

Impact of Caffeine and Protein on Postexercise Muscle Glycogen Synthesis

BEELEN, MILOU; VAN KRANENBURG, JANNEAU; SENDEN, JOAN M.; KUIPERS, HARM; VAN LOON, LUC J. C.

Collapse Box

Abstract

Background: Both protein and caffeine coingestion with CHO have been suggested to represent effective dietary strategies to further accelerate postexercise muscle glycogen synthesis in athletes.

Purpose: This study aimed to assess the effect of protein or caffeine coingestion on postexercise muscle glycogen synthesis rates when optimal amounts of CHO are ingested.

Methods: Fourteen male cyclists were studied on three different test days. Each test day started with a glycogen-depleting exercise session. This was followed by a 6-h recovery period, during which subjects received 1.2 g·kg−1·h−1 CHO, the same amount of CHO with 0.3 g·kg−1·h−1 of a protein plus leucine mixture (CHO + PRO), or 1.7 mg·kg−1·h−1 caffeine (CHO + CAF). All drinks were enriched with [U-13C6]-labeled glucose to assess potential differences in the appearance rate of ingested glucose from the gut. Muscle biopsies were collected immediately after cessation of exercise and after 6 h of postexercise recovery.

Results: The plasma insulin response was higher in CHO + PRO compared with CHO and CHO + CAF (P < 0.01). Plasma glucose responses and glucose appearance rates did not differ between experiments. Muscle glycogen synthesis rates averaged 31 ± 4, 34 ± 4, and 31 ± 4 mmol·kg−1 dry weight·h−1 in CHO, CHO + PRO, and CHO + CAF, respectively (P = NS). In accordance, histochemical analyses did not show any differences between net changes in Type I and Type II muscle fiber glycogen content between experiments.

Conclusions: Coingestion of protein or caffeine does not further accelerate postexercise muscle glycogen synthesis when ample amounts of CHO (1.2 g·kg−1·h−1) are ingested.

©2012The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us