Skip Navigation LinksHome > April 2012 - Volume 44 - Issue 4 > Biphasic Stress Response in the Soleus during Reloading afte...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31823ab37a
Basic Sciences

Biphasic Stress Response in the Soleus during Reloading after Hind Limb Unloading

LAWLER, JOHN M.1; KWAK, HYO-BUM1; KIM, JONG-HEE1; LEE, YANG1; HORD, JEFFREY M.1; MARTINEZ, DANIEL A.2

Collapse Box

Abstract

Introduction: Extreme disuse and spaceflight elicit rapid skeletal muscle atrophy, accompanied by elevated proinflammatory signaling and impaired stress response proteins (e.g., heat shock proteins (HSP), insulin-like growth factor 1 (IGF-1)). Recovery of muscle mass is delayed during the early stage of reloading after prolonged unloading, with a concomitant impairment of HSP70 and IGF-1. We postulated that proinflammatory signaling and stress response alterations would characterize early and late phases of signaling during reloading.

Methods: Twenty-four adult SD rats were divided into the following groups: controls, 28 d of hind limb unloading (HU), HU + early (7 d) reloading (HU-R7), and HU + late (28 d) reloading (HU-R28).

Results: Soleus mass decreased (−55%) with HU and remained depressed (−41%) at HU-R7. Nuclear factor κB activation and oxidative stress were elevated with HU and remained high during reloading. HU elevated inducible nitric oxide synthase and returned to baseline during reloading, whereas 3-nitrotyrosine did not increase with HU and peaked at HU-R7. HU depressed levels of HSP25 phosphorylation at Ser82 and IGF-1. Although p-HSP25 and Akt phosphorylation (Ser473) recovered during early reloading, HSP70, heat shock factor 1, and IGF-1 remained depressed. HSP70, heat shock factor 1, and IGF-1 recovered, whereas p-Akt and 3-nitrotyrosine decreased to control levels at HU-R28.

Conclusions: Reloading elicited an early phase characterized by elevated nuclear factor κB activation, 3-nitrotyrosine, p-HSP25, and p-Akt levels and a delayed phase with recovery of HSP70, IGF-1, and muscle mass. We conclude that the reloading phenotype in skeletal muscle is expressed in two distinct phases related to (a) pro-inflammatory signaling and (b) muscle mass recovery.

©2012The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us