Share this article on:

Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training


Medicine & Science in Sports & Exercise: September 2011 - Volume 43 - Issue 9 - pp 1725-1734
doi: 10.1249/MSS.0b013e318213f880
Applied Sciences

Purpose: This study aimed to analyze the acute mechanical and metabolic response to resistance exercise protocols (REP) differing in the number of repetitions (R) performed in each set (S) with respect to the maximum predicted number (P).

Methods: Over 21 exercise sessions separated by 48-72 h, 18 strength-trained males (10 in bench press (BP) and 8 in squat (SQ)) performed 1) a progressive test for one-repetition maximum (1RM) and load-velocity profile determination, 2) tests of maximal number of repetitions to failure (12RM, 10RM, 8RM, 6RM, and 4RM), and 3) 15 REP (S × R[P]: 3 × 6[12], 3 × 8[12], 3 × 10[12], 3 × 12[12], 3 × 6[10], 3 × 8[10], 3 × 10[10], 3 × 4[8], 3 × 6[8], 3 × 8[8], 3 × 3[6], 3 × 4[6], 3 × 6[6], 3 × 2[4], 3 × 4[4]), with 5-min interset rests. Kinematic data were registered by a linear velocity transducer. Blood lactate and ammonia were measured before and after exercise.

Results: Mean repetition velocity loss after three sets, loss of velocity pre-post exercise against the 1-m·s−1 load, and countermovement jump height loss (SQ group) were significant for all REP and were highly correlated to each other (r = 0.91-0.97). Velocity loss was significantly greater for BP compared with SQ and strongly correlated to peak postexercise lactate (r = 0.93-0.97) for both SQ and BP. Unlike lactate, ammonia showed a curvilinear response to loss of velocity, only increasing above resting levels when R was at least two repetitions higher than 50% of P.

Conclusions: Velocity loss and metabolic stress clearly differs when manipulating the number of repetitions actually performed in each training set. The high correlations found between mechanical (velocity and countermovement jump height losses) and metabolic (lactate, ammonia) measures of fatigue support the validity of using velocity loss to objectively quantify neuromuscular fatigue during resistance training.

Faculty of Sport, Pablo de Olavide University, Seville, SPAIN

Address for correspondence: Luis Sánchez-Medina, Ph.D., Facultad del Deporte, Pablo de Olavide University, Ctra. de Utrera km 1, 41013 Seville, Spain; E-mail:

Submitted for publication December 2010.

Accepted for publication February 2011.

©2011The American College of Sports Medicine