Skip Navigation LinksHome > July 2011 - Volume 43 - Issue 7 > Intermittent-Sprint Performance and Muscle Glycogen after 30...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31820abc5a
Applied Sciences

Intermittent-Sprint Performance and Muscle Glycogen after 30 h of Sleep Deprivation

SKEIN, MELISSA1; DUFFIELD, ROB1; EDGE, JOHANN2,3✠; SHORT, MICHAEL J.3; MÜNDEL, TOBY3

Collapse Box

Abstract

Purpose: The aim of this study was to determine the effects of 30 h of sleep deprivation on consecutive-day intermittent-sprint performance and muscle glycogen content.

Methods: Ten male, team-sport athletes performed a single-day "baseline" session and two consecutive-day experimental trials separated either by a normal night's sleep (CONT1 and CONT2) or no sleep (SDEP1 and SDEP2). Each session included a 30-min graded exercise run and 50-min intermittent-sprint exercise protocol, including a 15-m maximal sprint every minute and self-paced exercise bouts of varying intensities. Muscle biopsies were extracted before and after exercise during the baseline session and before exercise on day 2 during experimental trials. Voluntary force and activation of the right quadriceps, nude mass, HR, core temperature, capillary blood lactate and glucose, RPE, and a modified POMS were recorded before, after, and during the exercise protocols.

Results: Mean sprint times were slower on SDEP2 (2.78 ± 0.17 s) compared with SDEP1 (2.70 ± 0.16 s) and CONT2 (2.74 ± 0.15 s, P < 0.05). Distance covered during self-paced exercise was reduced during SDEP2 during the initial 10 min compared with SDEP1 and during the final 10 min compared with CONT2 (P < 0.05). Muscle glycogen concentration was lower before exercise on SDEP2 (209 ± 60 mmol·kg−1 dry weight) compared with CONT2 (274 ± 54 mmol·kg−1 dry weight, P = 0.05). Voluntary force and activation were reduced on day 2 of both conditions; however, both were lower in SDEP2 compared with CONT2 (P < 0.05). Sleep loss did not affect RPE but negatively affected POMS ratings (P < 0.05).

Conclusions: Sleep loss and associated reductions in muscle glycogen and perceptual stress reduced sprint performance and slowed pacing strategies during intermittent-sprint exercise for male team-sport athletes.

©2011The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us