Skip Navigation LinksHome > January 2011 - Volume 43 - Issue 1 > Endoplasmic Reticulum Stress Markers and Ubiquitin-Proteasom...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e3181e4c5d1
Basic Sciences

Endoplasmic Reticulum Stress Markers and Ubiquitin-Proteasome Pathway Activity in Response to a 200-km Run

KIM, HYO JEONG1; JAMART, CÉCILE2; DELDICQUE, LOUISE2; AN, GANG-LI2; LEE, YOON HEE1; KIM, CHANG KEUN1; RAYMACKERS, JEAN-MARC2; FRANCAUX, MARC2

Collapse Box

Abstract

Purpose: This study investigated whether a 200-km run modulates signaling pathways implicated in cellular stress in skeletal muscle, with special attention paid to the endoplasmic reticulum (ER) stress and to the activation of the ubiquitin-proteasome pathway.

Methods: Eight men ran 200 km (28 h 03 min ± 2 h 01 min). Two muscle biopsies were obtained from the vastus lateralis muscle 2 wk before and 3 h after the race. Mitogen-activated protein kinase, ubiquitin-proteasome pathway, ER stress, inflammation, and oxidative stress markers were assayed by Western blot analysis or by quantitative real-time polymerase chain reaction. Chymotrypsin-like activity of the proteasome was measured by a fluorimetric assay.

Results: Phosphorylation states of extracellular signal-related kinase 1/2 (+401% ± 173.8%, P = 0.027) and c-Jun N-terminal (+149% ± 61.9%, P = 0.023) increased after the race, whereas p38 phosphorylation remained unchanged. Increases in BiP (+235% ± 94.7%, P = 0.021) and in the messenger RNA level of total (+138% ± 31.2%, P = 0.002) and spliced X-box binding protein 1 (+241% ± 53.3%, P = 0.001) indicated the presence of ER stress. Transcripts of inflammatory markers interleukin-6 (+403% ± 96.1%, P = 0.002) and tumor necrosis factor-α (+233% ± 58.4%, P = 0.003) as well as oxidative stress markers metallothionein 1F (+519% ± 258.3%, P = 0.042), metallothionein 1H (+666% ± 157.5%, P = 0.002), and nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) (+162% ± 60.5%, P = 0.016) were increased. The messenger RNA level of the ubiquitin ligases muscle-specific RING finger 1 (+583% ± 244.3%, P = 0.024) and muscle atrophy F-box (+249% ± 83.8%, P = 0.011) and the C2 proteasome subunit (+116% ± 40.6%, P = 0.012) also increased. Surprisingly, the amount of ubiquitin-conjugated proteins and the chymotrypsin-like activity of the proteasome were decreased by 20% ± 8.3% (P = 0.025) and 21% ± 4.4% (P = 0.001), respectively. The expression of ubiquitin-specific protease 28 deubiquitinase was increased (+81% ± 37.9%, P = 0.034).

Conclusions: In the skeletal muscle, a 200-km run activates the expression of ubiquitin ligases muscle-specific RING finger 1 and muscle atrophy F-box as well as various cellular stresses, among which are ER stress, oxidative stress, and inflammation. Meanwhile, compensatory mechanisms seem also triggered: the unfolded protein response is up-regulated, and the chymotrypsin-like activity of the proteasome is repressed.

©2011The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us