Skip Navigation LinksHome > August 2009 - Volume 41 - Issue 8 > Fatigue-Induced ACL Injury Risk Stems from a Degradation in...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31819ca07b
Applied Sciences

Fatigue-Induced ACL Injury Risk Stems from a Degradation in Central Control

MCLEAN, SCOTT G.1; SAMOREZOV, JULIA E.2

Collapse Box

Abstract

Purpose: Fatigue contributes directly to anterior cruciate ligament (ACL) injury via promotion of high risk biomechanics. The potential for central fatigue to dominate this process, however, remains unclear. With centrally mediated movement behaviors being trainable, establishing this link seems critical for improved injury prevention. We thus determined whether fatigue-induced landing biomechanics were governed by a centrally fatiguing mechanism.

Methods: Twenty female NCAA athletes had initial contact (IC) and peak stance (PS) three-dimensional hip and knee biomechanics quantified during anticipated and unanticipated single-leg landings, before and during unilateral fatigue accumulation. To induce fatigue, subjects performed repetitive (n = 3) single-leg squats and randomly ordered landings, until squats were no longer possible. Subject-based dependent factors were calculated across prefatigue trials and for those denoting 100%, 75%, 50%, and 25% fatigue and were submitted to three-way mixed-design analyses of covariance to test for decision, fatigue time, and limb effects.

Results: Fatigue produced significant (P < 0.01) decreases in IC knee flexion angle and PS knee flexion moment and increases in PS hip internal rotation and knee abduction angles and moments, with differences maintained from 50% fatigue through to maximum. Fatigue-induced increases in PS hip internal rotation angles and PS knee abduction angles and loads were also significantly (P < 0.01) greater during unanticipated landings. Apart from PS hip moments, significant limb differences in fatigued landing biomechanics were not observed.

Conclusions: Unilateral fatigue induces a fatigue crossover to the contralateral limb during single-leg landings. Central fatigue thus seems to be a critical component of fatigue-induced sports landing strategies. Hence, targeted training of central control processes may be necessary to counter successfully the debilitative impact of fatigue on ACL injury risk.

© 2009 American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us