Skip Navigation LinksHome > August 2009 - Volume 41 - Issue 8 > A Mathematical Model to Describe Fat Oxidation Kinetics duri...
Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31819e2f91
Basic Sciences

A Mathematical Model to Describe Fat Oxidation Kinetics during Graded Exercise

CHENEVIÈRE, XAVIER1; MALATESTA, DAVIDE1; PETERS, EDITH M.2; BORRANI, FABIO1

Collapse Box

Abstract

Purpose: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%V˙O2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition.

Methods: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)].

Results: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 ± 10% V˙O2max) and MFO (0.37 ± 0.16 g·min−1) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001).

Conclusions: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.

© 2009 American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us