Institutional members access full text with Ovid®

Share this article on:

Muscle Torque Preservation and Physical Activity in Individuals with Stroke


Medicine & Science in Sports & Exercise: July 2009 - Volume 41 - Issue 7 - p 1353-1360
doi: 10.1249/MSS.0b013e31819aaad1
Clinical Sciences

Background: A greater percent loss of concentric versus eccentric muscle torque (i.e., relative eccentric muscle torque preservation) has been reported in the paretic limb of individuals with stroke and has been attributed to hypertonia and/or cocontractions. Stroke provides a unique condition for examining mechanisms underlying eccentric muscle preservation because both limbs experience similar amounts of general physical activity, but the paretic side is impaired directly by the brain lesion.

Purpose: The purpose of this study was to determine 1) whether eccentric preservation also exists in the nonparetic limb and 2) the relationship of eccentric or concentric torque preservation with physical activity in stroke. We hypothesized that the nonparetic muscles would demonstrate eccentric muscle preservation, which would suggest that nonneural mechanisms may also contribute to its relative preservation.

Methods: Eighteen patients who had stroke and 18 healthy control subjects (age- and sex-matched) completed a physical activity questionnaire. Maximum voluntary concentric and eccentric joint torques of the ankle, knee, and hip flexors and extensors were measured using an isokinetic dynamometer at 30°·s−1 for the paretic and nonparetic muscles. Relative concentric and eccentric peak torque preservations were expressed as a percentage of control subject torque.

Results: Relative eccentric torque was higher (more preserved) than relative concentric torque for paretic and nonparetic muscles. Physical activity correlated with paretic (r = 0.640, P = 0.001) and nonparetic concentric torque preservation (r = 0.508, P = 0.009) but not with eccentric torque preservation for either leg.

Conclusions: The relative preservation of eccentric torque in the nonparetic muscles suggest a role of nonneural mechanisms and could also explain the preservation observed in other chronic health conditions. Loss of concentric, but not eccentric, muscle torque was related to physical inactivity in stroke.

1Rehabilitation Research Laboratory, GF Strong Rehab Centre, Vancouver, British Columbia, CANADA; 2Department of Physical Therapy and Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, CANADA; and 3University of Saint Augustine for Health Sciences, St Augustine, FL

Address for correspondence: Janice J. Eng, P.T./O.T., Ph.D., Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3; E-mail:

Submitted for publication July 2008.

Accepted for publication December 2008.

©2009The American College of Sports Medicine