Moments and Muscle Activity after High Tibial Osteotomy and Anterior Cruciate Ligament Reconstruction

KEAN, CRYSTAL O.1; BIRMINGHAM, TREVOR B.1,2; GARLAND, JAYNE S.2,3; JENKYN, THOMAS R.1,4; IVANOVA, TANYA D.2; JONES, IAN C.1; GIFFIN, ROBERT J.1,5

Medicine & Science in Sports & Exercise:
doi: 10.1249/MSS.0b013e31818a8c91
Applied Sciences
Abstract

Purposes: To evaluate the effects of simultaneous high tibial osteotomy (HTO) and anterior cruciate ligament (ACL) reconstruction on 1) the external knee adduction moment, 2) the external knee flexion and extension moments, and 3) the quadriceps, hamstrings, and gastrocnemius muscle activity during walking.

Methods: Twenty-one patients with varus malalignment of the lower limb, medial compartment knee osteoarthritis, and concomitant anterior cruciate ligament (ACL) deficiency were tested before and 1 yr after undergoing simultaneous medial opening wedge high tibial osteotomy (HTO) and ACL reconstruction during a single operation. Three-dimensional kinetic and kinematic data were used to calculate external coronal and sagittal moments about the knee. EMG data from the quadriceps, hamstrings, and gastrocnemius were used to determine coactivation ratio and activation patterns.

Results: Neutral alignment and knee stability were achieved in all patients after surgery. The peak knee adduction moment decreased from 2.88 ± 0.57 to 1.71 ± 0.56%BW×Ht (P < 0.001). The early stance knee flexion moment decreased from 1.95 ± 1.89 to 0.88 ± 1.17%BW×Ht (P < 0.01). The late stance knee extension moment increased from 1.83 ± 1.53 to 2.76 ± 1.22%BW×Ht (P < 0.001). There were no significant differences in muscle coactivation or muscle activation patterns (P > 0.05).

Conclusions: Improving lower limb alignment and knee stability significantly alters the coronal and the sagittal moments about the knee during walking, without apparent changes in muscle activation patterns.

Author Information

1Wolf Orthopaedic Biomechanics Laboratory, University of Western Ontario, London, Ontario, CANADA; 2School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, CANADA; 3Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario, CANADA; 4Faculty of Engineering, University of Western Ontario, London, Ontario, CANADA; and 5Department of Surgery, Schulich School of Medicine, University of Western Ontario, London, Ontario, CANADA

Address for Correspondence: Trevor B. Birmingham, Ph.D., P.T., School of Physical Therapy, Elborn College, University of Western Ontario, London, Ontario, Canada N6G 1H1; E-mail: tbirming@uwo.ca.

Submitted for publication February 2008.

Accepted for publication August 2008.

©2009The American College of Sports Medicine