A Creatine-Protein-Carbohydrate Supplement Enhances Responses to Resistance Training

CRIBB, PAUL J.1; WILLIAMS, ANDREW D.2; HAYES, ALAN1

Medicine & Science in Sports & Exercise: November 2007 - Volume 39 - Issue 11 - pp 1960-1968
doi: 10.1249/mss.0b013e31814fb52a
BASIC SCIENCES: Original Investigations

Purpose: Studies attributing gains in strength and lean body mass (LBM) to creatine monohydrate (CrM) during resistance exercise (RE) training have not assessed these changes alongside cellular and subcellular adaptations. Additionally, CrM-treated groups have seldom been compared with a group receiving a placebo similar in nitrogen and energy. The purpose of this study was to examine the effects of a CrM-containing protein-carbohydrate (PRO-CHO) supplement in comparison with a supplement containing a similar amount of nitrogen and energy on body composition, muscle strength, fiber-specific hypertrophy, and contractile protein accrual during RE training.

Methods: In a double-blind, randomized protocol, resistance-trained males were matched for strength and placed into one of three groups: protein (PRO), PRO-CHO, or the same PRO-CHO supplement (1.5 g·kg−1 body weight·d−1) containing CrM (Cr-PRO-CHO) (0.1 g·kg−1 body weight·d−1). Assessments were completed the week before and after a 10-wk structured, supervised RE program: strength (1RM, three exercises), body composition (DEXA), and vastus lateralis muscle biopsies for determination of muscle fiber type (I, IIa, IIx), cross-sectional area (CSA), contractile protein, and creatine content.

Results: Cr-PRO-CHO provided greater improvements in 1RM strength. At least 40% of the strength improvements could be attributed to hypertrophy of muscle involved in this exercise. Cr-PRO-CHO also resulted in greater increases in LBM, fiber CSA, and contractile protein compared with PRO and PRO-CHO.

Conclusions: In RE-trained participants, supplementation with Cr-PRO-CHO provided greater muscle hypertrophy than an equivalent dose of PRO-CHO, and this response was apparent at three levels of physiology (LBM, fiber CSA, and contractile protein content).

1Exercise Metabolism Unit, Center for Ageing, Rehabilitation, Exercise and Sport (CARES) and the School of Biomedical Sciences, Victoria University, Victoria, AUSTRALIA; and 2School of Human Life Sciences, University of Tasmania, Launceston, AUSTRALIA

Address for correspondence: Alan Hayes, Ph.D., Exercise Metabolism Unit, School of Biomedical Sciences, Victoria University, MCMC Melbourne Vic 8001 Australia; E-mail: Alan.Hayes@vu.edu.au.

Submitted for publication November 2006.

Accepted for publication July 2007.

©2007The American College of Sports Medicine