Skip Navigation LinksHome > October 2007 - Volume 39 - Issue 10 > Positive and Negative Loading and Mechanical Output in Maxim...
Medicine & Science in Sports & Exercise:
doi: 10.1249/mss.0b013e31811ece35

Positive and Negative Loading and Mechanical Output in Maximum Vertical Jumping


Collapse Box


Purpose: The aim of this study was to evaluate the effect of external loading on mechanics of vertical jumping. We hypothesized that the muscular mechanical output could be higher under no-load conditions than in the presence of either positive or negative external loads.

Methods: Fifteen physically active men performed maximal countermovement jumps (CMJ) on a force plate while a pulley system provided approximately constant vertical force acting in a way to either reduce or increase the body weight. As a result, the weight of the body approximately corresponded to the gravity acceleration from 0.70 to 1.30g (g = 9.81 m·s−2).

Results: Regarding the jumping kinematics, we observed a significant (P < 0.001) load-associated decrease in both the peak velocity and lowering of the center of mass during the eccentric jump phase, but not in the duration of the subsequent concentric jump phase. Regarding the muscular mechanical output, both the mean power () and peak momentum (M) revealed significant (P < 0.001) changes associated with loading, and further post hoc analyses revealed significantly higher values (P < 0.05-0.001) of both and M for 1.00g compared with most of the other loading conditions applied.

Conclusion: The results suggest that subject's own body provides the optimal load for producing maximum mechanical output in vertical jumping. If corroborated by the results of future studies performed on other rapid movement, our findings could support the hypothesis that the muscular system is designed for producing maximum mechanical output in rapid movements when loaded only with the weight and inertia of its own body.

©2007The American College of Sports Medicine


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us