Creatine Monohydrate Increases Bone Mineral Density in Young Sprague-Dawley Rats

ANTOLIC, ANAMARIA1; ROY, BRIAN D.2; TARNOPOLSKY, MARK A.1; ZERNICKE, RONALD F.3; WOHL, GREGORY R.3; SHAUGHNESSY, STEPHEN G.4; BOURGEOIS, JACQUELINE M.4

Medicine & Science in Sports & Exercise: May 2007 - Volume 39 - Issue 5 - pp 816-820
doi: 10.1249/mss.0b013e318031fac4
BASIC SCIENCES: Original Investigations

Introduction: Creatine kinase, found in osteoblasts, is an enzyme that is upregulated in response to interventions that enhance bone mass accretion. Creatine monohydrate supplementation can increase fat-free mass in young healthy men and women and can reduce markers of bone breakdown in boys with Duchenne muscular dystrophy.

Purpose: The objective of this study was to determine the influence of supplementation with creatine monohydrate on bone structure and function in growing rats, to establish a therapeutic model.

Materials and Methods: Creatine monohydrate (2% w.w.) (CR; N = 16) or standard rat chow (CON; N = 16) was fed to Sprague-Dawley rats beginning at 5 wk of age, for 8 wk. Bone mineral density (BMD) and content (BMC) were assessed using dual-energy x-ray absorptiometry at the beginning and end of the protocol. The rats were sacrificed, and one femur was removed for the determination of mechanical properties.

Results: The CR-treated rats showed greater lumbar BMD and femoral bending load at failure compared with the CON rats (P < 0.05).

Conclusions: Together, these data suggest that creatine monohydrate potentially has a beneficial influence on bone function and structure; further investigation is warranted into its effect on bone functional properties and its effects in disorders associated with bone loss.

1Departments of Pediatrics and Medicine, McMaster University, Hamilton, CANADA; 2Faculty of Applied Health Sciences, Brock University, St. Catharines, CANADA; 3Faculties of Kinesiology, Engineering, and Medicine, University of Calgary, Calgary, CANADA; and 4Department of Pathology and Molecular Medicine, McMaster University, Hamilton, CANADA

Address for correspondence: Jacqueline M. Bourgeois, M.D., Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W., Hamilton, Ontario, L8N 3Z5 Canada; E-mail: bourjac@hhsc.ca.

Submitted for publication September 2006.

Accepted for publication December 2006.

©2007The American College of Sports Medicine