Share this article on:

Effect of Static and Ballistic Stretching on the Muscle-Tendon Tissue Properties

MAHIEU, NELE NATHALIE1; MCNAIR, PETER2; DE MUYNCK, MARTINE3; STEVENS, VEERLE1; BLANCKAERT, IAN1; SMITS, NELE1; WITVROUW, ERIK1

Medicine & Science in Sports & Exercise: March 2007 - Volume 39 - Issue 3 - pp 494-501
doi: 10.1249/01.mss.0000247004.40212.f7
APPLIED SCIENCES: Biodynamics

Purpose: Many studies have been undertaken to define the effects of static and ballistic stretching. However, most researchers have focused their attention on joint range-of-motion measures. The objective of the present study was to investigate whether static- and ballistic-stretching programs had different effects on passive resistive torque measured during isokinetic passive motion of the ankle joint and tendon stiffness measured by ultrasound imaging.

Methods: Eighty-one healthy subjects were randomized into three groups: a static-stretch group, a ballistic-stretch group, and a control group. Both stretching groups performed a 6-wk stretching program for the calf muscles. Before and after this period, all subjects were evaluated for ankle range of motion, passive resistive torque of the plantar flexors, and the stiffness of the Achilles tendon.

Results: The results of the study reveal that the dorsiflexion range of motion was increased significantly in all groups. Static stretching resulted in a significant decrease of the passive resistive torque, but there was no change in Achilles tendon stiffness. In contrast, ballistic stretching had no significant effect on the passive resistive torque of the plantar flexors. However, a significant decrease in stiffness of the Achilles tendon was observed in the ballistic-stretch group.

Conclusion: These findings provide evidence that static and ballistic stretching have different effects on passive resistive torque and tendon stiffness, and both types of stretching should be considered for training and rehabilitation programs.

1Department of Rehabilitation Sciences and Physiotherapy; Faculty of Medicine and Health Sciences, Ghent University, Ghent, BELGIUM; 2Physical Rehabilitation Research Centre, Auckland University of Technology, Auckland, NEW ZEALAND; and 3Department of Physical Medicine and Orthopaedic Surgery, Faculty of Medicine and Health Sciences, Ghent University, Ghent, BELGIUM

Address for correspondence: Nele N. Mahieu, PT, Department of Rehabilitation Sciences and Physical Therapy, University Hospital Ghent, De Pintelaan 185, 6K3, B9000 Ghent, Belgium; E-mail: Nele.Mahieu@UGent.be.

Submitted for publication April 2006.

Accepted for publication September 2006.

©2007The American College of Sports Medicine