Skip Navigation LinksHome > January 2007 - Volume 39 - Issue 1 > Related Trends in Locomotor and Respiratory Muscle Oxygenati...
Medicine & Science in Sports & Exercise:
doi: 10.1249/01.mss.0000241638.90348.67
BASIC SCIENCES: Original Investigations

Related Trends in Locomotor and Respiratory Muscle Oxygenation during Exercise

LEGRAND, RENAUD1,2; MARLES, ALEXANDRE2; PRIEUR, FABRICE2; LAZZARI, STEFANO2; BLONDEL, NICOLAS2; MUCCI, PATRICK1

Collapse Box

Abstract

Purpose: We investigated the potential effect of respiratory muscle work on leg muscle oxygenation without artificial intervention in non-endurance-trained young subjects and searched for the range of intensity when this effect could occur.

Methods: We simultaneously monitored accessory respiratory and leg muscle oxygenation patterns with near-infrared spectroscopy (NIRS) in 15 healthy young men performing maximal incremental exercise on a cycle ergometer. Pulmonary gas exchange was measured. The respiratory compensation point (RCP) was determined. Oxygenation (RMO2) and blood volume (RMBV) of the serratus anterior (accessory respiratory muscle) and of the vastus lateralis (LegO2 and LegBV) were monitored with NIRS. The breakdown point of accessory respiratory muscle oxygenation (BPRMO2) and the accelerated (BP1LegO2) and attenuated fall (BP2LegO2) in leg muscle oxygenation were detected.

Results: BPRMO2 occurred at approximately 85% V˙O2max and was related to RCP (r = 0.88, P < 0.001). BP2LegO2 appeared at approximately 83% V˙O2max and was related to RCP (r = 0.57, P < 0.05) and with BPRMO2 (r = 0.64, P = 0.01). From BP2LegO2 to maximal exercise, LegBV was significantly reduced (P < 0.05).

Conclusion: In active subjects exercising at heavy exercise intensities, we observed that the appearance of the accelerated drop in accessory respiratory muscle oxygenation-associated with high ventilatory level-was related with the attenuated fall in leg muscle oxygenation detected with near-infrared spectroscopy. This suggests that the high oxygen requirement of respiratory muscle leads to limited oxygen use by locomotor muscles as demonstrated in endurance-trained subjects. The phenomenon observed was associated with reduced leg blood volume, supporting the occurrence of leg vasoconstriction. These events appeared not only at maximal exercise but onward above the respiratory compensation point.

©2007The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us