Share this article on:

Neural Activation after Maximal Isometric Contractions at Different Muscle Lengths


Medicine & Science in Sports & Exercise: May 2006 - Volume 38 - Issue 5 - pp 937-944
doi: 10.1249/01.mss.0000218136.58899.46

Purpose: To investigate i) whether neural activation dependence on muscle length is preserved with neuromuscular fatigue and ii) whether fatigue induced by a maximal isometric exercise is muscle length dependent.

Methods: Twelve male subjects performed two fatiguing quadriceps muscle exercises: FS is the fatigue carried out at short muscle length (S) (S = 40° of knee flexion) and FL is the fatigue at long muscle length (L) (L = 100°). Before and after each fatiguing exercise (i.e., three maximal isometric contractions maintained until 80, 60, and 40% of the initial maximal torque, respectively), activation level (AL, assessed by means of twitch interpolation technique), EMG activity (RMS), and peak doublet torque (Pd) were measured at the two lengths (S and L).

Results: First, AL was greater (P < 0.05) at L compared with S before and after both exercises. Second, despite a similar decrease in maximal voluntary torque (~21% of the initial value) after the two exercises, AL and RMS were significantly reduced after FS (P < 0.05) but remained unchanged after FL, whereas the Pd decrease was more pronounced after FL than FS (P < 0.05). Nevertheless, after a given fatiguing exercise (i.e., FS or FL), AL, RMS, and Pd changes were similar at both postexercise test lengths (S and L).

Conclusion: These results clearly demonstrate that i) the neural activation dependence on quadriceps muscle length is maintained with fatigue, and ii) neuromuscular fatigue after maximal isometric contractions is dependent on the muscle length at which the exercise is performed: short length preferentially induces neural activation impairment, whereas long length leads to higher contractile failure.

1 INSERM/ERIT-M Motricity-Plasticity, Faculty of Sport Science, University of Burgundy, Dijon, FRANCE; 2INRS, Occupational Physiology Laboratory, Nancy, FRANCE; and 3Motor Performance and Health, Faculty of Sport Science, Strasbourg, FRANCE

Address for correspondence: Kévin Desbrosses, INRS, Occupational Physiology Laboratory, Avenue de Bourgogne, BP 24, 54501 Vandoeuvre Cedex, France; E-mail:

Submitted for publication June 2005.

Accepted for publication December 2005.

©2006The American College of Sports Medicine