Share this article on:

Effects of Graded Carbohydrate Supplementation on the Immune Response in Cycling

SCHARHAG, JÜRGEN1; MEYER, TIM1; AURACHER, MARKUS1; GABRIEL, HOLGER H.2; KINDERMANN, WILFRIED1

Medicine & Science in Sports & Exercise: February 2006 - Volume 38 - Issue 2 - p 286-292
doi: 10.1249/01.mss.0000191437.69493.d4
BASIC SCIENCES: Original Investigations

Purpose: This study examined the acute immune response after three standardized cycling sessions of 4-h duration in the field with varying carbohydrate (CHO) supplementation in a randomized, double-blind, placebo-controlled fashion. We hypothesized that the ingestion of carbohydrate (6 or 12% CHO beverages; placebo (P) without CHO) during exercise attenuates the exercise-induced immune response in a dose-dependent manner.

Methods: A total of 14 male competitive cyclists and triathletes (age: 25 ± 5 yr; height: 180 ± 7 cm; weight: 72 ± 9 kg; V̇O2max: 67 ± 6 mL·min−1·kg−1) cycled for 4 h on a 400-m track at a given workload of 70% of the individual anaerobic threshold (198 ± 21 W). Leukocyte and lymphocyte subpopulations were measured by flow cytometry before, immediately, and 1 and 19 h after exercise. In addition, C-reactive protein (CRP) interleukin 6 (IL-6), and cortisol were determined.

Results: The exercise-induced increase in leukocytes, neutrophils, and monocytes was significantly attenuated to the same extent by 6 and 12% CHO (P < 0.001). No differences could be demonstrated for lymphocytes and natural killer cells. The increase in CRP was attenuated significantly by 12% CHO only (P < 0.05), whereas the increase in cortisol and IL-6 was significantly reduced by 6 and 12% CHO (P < 0.001). The postexercise neutrophilia, which dominated the exercise-induced leukocytosis, was strongly related to the postexercise concentration of cortisol (r = 0.72; P < 0.001).

Conclusions: Because of the lacking dose-dependent difference, the ingestion of at least 6% CHO beverages can sufficiently attenuate the exercise-induced immune response and stress, especially in phagocytizing cells (neutrophils and monocytes) by the reduced release of cortisol.

1Institute of Sports and Preventive Medicine, University of Saarland, Saarbrücken, GERMANY; and 2Department of Sports Medicine, Friedrich-Schiller-University, Jena, GERMANY

Address for correspondence: Jürgen Scharhag, MD, Institute of Sports and Preventive Medicine, University of Saarland, Building B8.2 66123 Saarbrücken, Germany; E-mail: j.scharhag@mx.uni-saarland.de.

Submitted for publication March 2005.

Accepted for publication August 2005.

©2006The American College of Sports Medicine