Home Current Issue Previous Issues Published Ahead-of-Print Collections For Authors Journal Info
Skip Navigation LinksHome > August 2003 - Volume 35 - Issue 8 > A Community-Based Group Exercise Program for Persons with Ch...
Medicine & Science in Sports & Exercise:
CLINICAL SCIENCES: Clinical Investigations

A Community-Based Group Exercise Program for Persons with Chronic Stroke

ENG, JANICE J.1 2; CHU, KELLY S.1 2; MARIA KIM, C.1 2; DAWSON, ANDREW S.3; CARSWELL, ANNE1 2; HEPBURN, KATHERINE E.2

Collapse Box

Abstract

ENG, J. J., K. S. CHU, C. M. KIM, A. S. DAWSON, A. CARSWELL, and K. E. HEPBURN. A Community-Based Group Exercise Program for Persons with Chronic Stroke. Med. Sci. Sports Exerc., Vol. 35, No. 8, pp. 1271–1278, 2003.

Purpose: The purpose of this study was to evaluate the physical and psychosocial effects of an 8-wk community-based functional exercise program in a group of individuals with chronic stroke.

Methods: Twenty-five subjects (mean age 63 yr) participated in a repeated measures design that evaluated the subjects with two baseline assessments 1 month apart, one postintervention assessment, and one retention assessment 1 month postintervention. Physical outcome measures assessed were the Berg Balance Test, 12-Minute Walk Test distance, gait speed, and stair climbing speed. Psychosocial measures assessed were the Reintegration to Normal Living Index (RNL) and Canadian Occupational Performance Measure (COPM). The 8-wk training consisted of a 60-min, 3× wk−1 group program that focused on balance, mobility, functional strength, and functional capacity. The program was designed to be accessible by reducing the need for costly one-on-one supervision, specialized settings, and expensive equipment.

Results: Improvements from the exercise program were found for all physical measures and these effects were retained 1-month postintervention. Subjects with lower function improved the most relative to their initial physical status. Significant effects were found for the COPM, but not the RNL Index; however, subjects with lower RNL improved the most relative to their initial RNL Score.

Conclusion: A short-term community-based exercise program can improve and retain mobility, functional capacity, and balance and result in a demonstrable impact upon the performance of activities and abilities that were considered meaningful to the subjects. Implementation of such community-based programs has potential for improving activity tolerance and reducing the risk for secondary complications common to stroke (e.g., falls resulting in fractures and cardiac events).

Over 50,000 Canadians suffer from stroke each year, making it the number one cause of neurological disability in Canada today (22) and a leading cause of disability in the community (18). Ninety percent of stroke survivors have some functional disability, with mobility being the major impairment (20). Although some individuals with stroke will have received some rehabilitation during the acute and subacute phase, rarely does rehabilitation extend beyond 1 yr postinjury due to the belief that functional recovery has plateaued by this time (41). Impairments resulting from stroke, such as muscle weakness, pain, spasticity, and poor balance, in addition to the lack of accessible and appropriate community-based exercise programs, can lead to reduced tolerance to activity, further sedentary lifestyle, and additional declines in function and disability status (31).

Activities that promote mobility and fitness are imperative for the prevention of further pathological events (e.g., falls resulting in fracture, recurrent strokes, or cardiac events). Stroke is one of the top risk factors for incurring fractures as a result of a fall in older adults; Kanis et al. (23) analyzed 16.3 million hospitalizations due to fractures and reported a sevenfold hip fracture risk for individuals with stroke. In fact, the incidence of falls has been reported to be as high as 73% of individuals with stroke falling within 6 months after hospital discharge to home with an average of 3.4 falls per person during this 6-month time period (17). In addition, cardiovascular disease is the leading prospective cause of death in chronic stroke. Inactivity and low cardiovascular fitness, a major occurrence in persons with stroke, is one of the modifiable risk factors associated with cardiovascular disease.

In the past, intensive training in persons with stroke has been controversial due to the belief that strenuous activity would increase spasticity and reinforce abnormal movement (5). However, recent evaluation of intensive exercise programs has not found any evidence of an increase in spasticity (38).

Intensive treadmill protocols (29,33,36) are a recent addition to stroke rehabilitation and have resulted in improvements in gait and aerobic capacity; however, Smith et al. (37) found no significant improvements in reactive balance using an endurance treadmill protocol and suggested that functional or task-specific training may be needed to improve balance. Duncan et al. (13) also reported no significant improvements for the Berg Balance Score using a randomized controlled home-based individual exercise program (strengthening and walking program). Functional balance may be difficult to improve due to the varied tasks and movements under which balance is required. The one exception was a noncontrolled pilot study by Weiss et al. (42) that reported a 12% improvement in the Berg Balance Score for seven individuals with stroke by using a one-to-one high-intensity strengthening program. However, Kim et al. (25) recently undertook a double-blind randomized controlled trial of strength training in chronic stroke and found no carry-over into functional tasks and these authors emphasized the need for functional task-based practice.

Intensive rehabilitation programs for individuals with stroke have traditionally involved a one-to-one client-therapist ratio due to the close supervision required when challenging balance in these individuals, in addition to the necessary monitoring when taxing their cardiovascular function. However, given the current limited rehabilitation resources, it would be ideal to develop safe and effective community-based group exercise programs that are accessible to larger numbers of individuals. There is a clear and impressive void in the current literature that evaluates community-based group exercise programs for individuals with stroke, and only three studies have examined such programs. Rimmer et al. (36) undertook an intensive 12-wk community-based group training program (7 staff to 18 clients) that resulted in improvements in peak V̇O2, strength, and back flexibility but did not measure or train balance. A recent controlled pilot study that evaluated an 8-wk circuit training program found improvements in walking speed and 6-min walk distance, in addition to weight-bearing ability through the affected limb for the five experimental subjects (supervised by two physical therapists) compared with the four control subjects (11). Teixeira-Salmela et al. (38) found improvements in gait and stair climbing speed, in addition to muscle strength from a 10-wk muscle strengthening and physical conditioning program for 13 individuals with stroke. No studies to date have assessed the effect of a community-based group exercise program on both balance and functional capacity in individuals with stroke, and in addition, the retention of these effects has never been evaluated.

The purpose of this study was to evaluate a community-based group exercise intervention on both balance and functional capacity, two functions that are severely compromised in persons with stroke and can lead to devastating secondary complications We evaluated the effects of an 8-wk group exercise intervention on balance, walking ability, and functional capacity and the retention of these effects 1 month postintervention. Lastly, the psychosocial effects of exercise are infrequently evaluated in stroke, despite the well-documented high incidence of clinical depression in this population (4,9) and the knowledge that exercise can have substantial benefits to one’s well-being (10,24). Therefore, we also evaluated the effect of the exercise intervention on measures of health-related quality of life.

©2003The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us