Share this article on:

Microprocessor-based ambulatory activity monitoring in stroke patients

MACKO, RICHARD F.; HAEUBER, ELAINA; SHAUGHNESSY, MARIANNE; COLEMAN, KIM L.; BOONE, DAVID A.; SMITH, GERALD V.; SILVER, KENNETH H.

Medicine & Science in Sports & Exercise: March 2002 - Volume 34 - Issue 3 - p 394-399
CLINICAL SCIENCES: Clinical Investigations

MACKO, R. F., E. HAEUBER, M. SHAUGHNESSY, K. L. COLEMAN, D. A. BOONE, G. V. SMITH, and K. H. SILVER. Microprocessor-based ambulatory activity monitoring in stroke patients. Med. Sci. Sports Exerc., Vol. 34, No. 3, pp. 394–399, 2002.

Purpose Recovery of ambulatory function after stroke is routinely assessed using standardized subject- or observer-rated instruments that do not directly measure ambulatory activities in the home-community setting. Accuracy of conventional pedometers in stroke patients is not established, limiting their application in mobility outcomes monitoring. This study investigates the accuracy and reliability of a mechanical pedometer versus microprocessor-based step activity monitoring (SAM) in gait-impaired hemiparetic stroke patients.

Methods Accuracy and test-retest reliability of ankle-worn SAM and belt-worn pedometer were tested directly against hand tallied stride counts and cadence during a battery of timed walks in 16 chronic hemiparetic stroke patients. Patients performed replicate 1-min floor walks at self-selected and fastest comfortable paces, and two 6-min walks on separate days.

Results SAM cadence and total stride counts are more accurate than pedometers during 1-min walks at self-selected (99 ± 1 vs 87 ± 11.3%, mean ± SD, P < 0.01); fast pace (98 ± 2.3% vs 85 ± 15%, P < 0.01); and repeated 6-min walks performed on separate days (99 ± 1% vs 89 ± 12%, P < 0.01). Although SAM is highly reliable (r = 0.97, P < 0.0001) and accurate in all patients under every walking condition tested, the mechanical pedometer demonstrates this high level of accuracy in only half of stroke patients and has poor test-retest reliability (r = 0.64, P < 0.05).

Conclusion SAM, but not the conventional pedometer, provides accurate and reliable measures of cadence and total stride counts in hemiparetic stroke patients. Portable microprocessor-based gait monitoring offers potential to quantitatively measure home-community-based ambulatory activity levels in this population.

Baltimore Veterans Affairs Medical Center Geriatrics Research, Education, and Clinical Center, Baltimore, MD; The University of Maryland School of Medicine Division of Gerontology, Departments of Neurology, Physical Therapy, and School of Nursing, Baltimore, MD; The Prosthetics Research Study, Seattle, WA; and Departments of Orthopedics and Rehabilitation, University of Washington, Seattle, WA

Submitted for publication December 2000.

Accepted for publication June 2001.

©2002The American College of Sports Medicine