Skip Navigation LinksHome > July 1998 - Volume 30 - Issue 7 > Physiological responses to simulated rock climbing at diffe...
Medicine & Science in Sports & Exercise:
Applied Sciences: Physical Fitness And Performance

Physiological responses to simulated rock climbing at different angles

WATTS, PHILLIP B.; DROBISH, KIP M.

Collapse Box

Abstract

Physiological responses to simulated rock climbing at different angles. Med. Sci. Sports Exerc., Vol. 30, No. 7, pp. 1118-1122, 1998.

Purpose: Although rock climbing has increased in popularity as a recreational activity and competitive sport, few studies have assessed the physiological demands of the activity. To describe the physiological responses to rock climbing at different angles.

Methods: Sixteen experienced climbers (age = 26 ± 8 yr) attempted intermittent climbing bouts at different angles on a special rock climbing treadmill (Brewer's Ledge Treadwall™). Heart rate (HR) was monitored continuously, and V˙O2 was determined at 20-s intervals during each climbing bout. Immediately after each bout, the subject provided a rating of perceived exertion (RPE), and an average of right and left handgrip force (HG) was obtained. Blood was collected via fingerprick after each bout and analyzed for lactate (BL). On a separate day, each subject completed a steady-state treadmill running bout at a HR equal to that obtained at an 86° angle during the climbing test. This test was followed by a progression to exhaustion to determine peak HR and V˙O2 responses.

Results: While HR increased with climbing angle, V˙O2 did not significantly vary. BL began to significantly increase as the angle exceeded vertical (91°) and continued to increase with successive angles. HG decreased with increasing angle and was negatively correlated with BL (r = −0.96). Scores for RPE increased with steeper angles. The comparison of steady-state work at the same HR for climbing versus treadmill running revealed a higher V˙O2 during running with no differences in BL and RPE.

Conclusions: Based upon these results, it was concluded that continuous rock climbing over terrain steepness of 80° to 102° presents a "very heavy" work challenge, averaging 8.4-9.0 metabolic equivalents, regardless of angle. Despite similar RPE and BL, the relative exercise intensity elicited from simulated rock climbing is lower than that of running at the same HR.

© Williams & Wilkins 1998. All Rights Reserved.

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us