Skip Navigation LinksHome > January 1996 - Volume 28 - Issue 1 > Effect of the slow-component rise in oxygen uptake on ˙VO2ma...
Medicine & Science in Sports & Exercise:
Basic Sciences/Regulartory Physiology: Original Investigations

Effect of the slow-component rise in oxygen uptake on ˙VO2max

SLONIGER, MARK A.; CURETON, KIRK J.; CARRASCO, DARIO I.; PRIOR, BARRY M.; ROWE, DAVID A.; THOMPSON, RAYMOND W.

Collapse Box

Abstract

During constant-rate high-intensity (CRHI) exercise lasting longer than 3 min, ˙VO2 has been reported to exceed ˙VO2max measured with a traditional graded exercise test (GXT). This could be because˙VO2max was not achieved on the GXT or because the factors responsible for the slow-component rise in ˙VO2 alter˙VO2max. The objective of this study was to test the hypothesis that the slow-component rise in ˙VO2 measured during CRHI running leads to a total ˙VO2 that exceeds ˙VO2max measured during a running GXT. ˙VO2max was determined in eight highly trained individuals using data collected from five grade-incremented, treadmill-running GXT. Each subject demonstrated a definitive plateau of˙VO2 as a function of exercise intensity. Three ˙VO2max values based on different approaches for representing the ˙VO2max plateau were obtained. Subjects also completed two exhaustive CRHI bouts of treadmill running lasting 7-13 min at speeds estimated from the ACSM equation to elicit an average of 99 ± 5% ˙VO2max. The mean(±SD) ˙VO2peak determined during the CRHI runs (4.17± 0.9 l·min-1) was not different from or less than the three ˙VO2max values (4.19-4.32 ± 0.09 l·min-1). We conclude that in highly trained individuals, the slow-component rise in ˙VO2 during CRHI treadmill running does not lead to a total ˙VO2 that exceeds the ˙VO2max measured during a running graded exercise test.

©1996The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us