Skip Navigation LinksHome > December 1995 - Volume 27 - Issue 12 > The start in speed skating: from running to gliding.
Medicine & Science in Sports & Exercise:
Technical Notes: PDF Only

The start in speed skating: from running to gliding.

DE KONING, JOS J.; THOMAS, RIXTE; BERGER, MONIQUE; GROOT, GERT DE; VAN INGEN SCHENAU, GERRIT JAN

Collapse Box

Abstract

DE KONING, J. J., R. THOMAS, M. BERGER, G. DE GROOT, and G. J. VAN INGEN SCHENAU. The start in speed skating: from running to gliding. Med. Sci. Sports Exerc., Vol. 27, No. 12, pp. 1703-1708, 1995. The purpose of this study was to describe the push-off kinematics in speed skating using three-dimensional coordinates of elite male sprinters during the first part of a speed skating sprint. The velocity of the mass center of the skater's body vC, is decomposed into an "extension" velocity component vC, which is associated with the shortening and lengthening of the leg segment and a "rotational" velocity component vr, which is the result of the rotation of the leg segment about the toe of the skate. It can be concluded that the mechanics of the first strokes of a sprint differ considerably from the mechanics of strokes later on. The first push-offs take place against a fixed location on the ice. In these "running-like" push-offs the contribution of vr in the forward direction is larger than the extension component ve. Later on, the strokes are characterized by a gliding push-off in which vc increases. In these gliding push-offs no direct relation exists between forward velocity of the skater and the extension in the joints. This allows skaters to obtain much higher velocities than can be obtained during running.

(C)1995The American College of Sports Medicine

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us